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It is standard practice to form predictions from multinomial logit models by ignoring the
estimation error associated with the parameter estimates and solving for the predicted
endogeneous variable (market share) in terms of the exogenous variables and the point
estimates of the parameters. It has long been recognized in the econometrics literature that this -
type of nonstochastic prediction, which ignores the sampling distribution of the parameter
estimates, leads to incorrect inferences about the endogenous variable. We offer a simulation-
based approach for approximating the exact stochastic prediction. We show that this approach
provides very accurate approximations with minimal computation time and would be easy to

implement in industrial applications.
(Choice Models; Econometric Modeling)

1. Introduction

It is standard practice to form predictions from multi-
nomial logit models by ignoring the estimation error
associated with the parameter estimates and to solve
for the endogenous variable as a function of the
exogenous variables and the point estimates of the
parameters. Given some competitive set of N prod-
ucts, the predicted market share S.(i1) for some prod-
uctk € {1, ..., N} would be computed as

eﬁk
= zy_l e&"'

where # = (il,, ..., i) is the vector of utility point
estimates of the respective products. Because these
estimates are obtained from finite samples, the corre-
sponding market share predictions are sensitive to the
sampling variation in these utility estimates.
Forming predictions from (1.1), or an analog
thereof, is what Klein (1971) termed “deterministic
prediction.” He instead advocated “stochastic predic-
tion,” “where we fully recognize the influence of
random error on our judgement.” This insight led to a
series of papers, mostly by macroeconomists con-
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cerned with economic prediction (e.g., Fair 1980),
where the sampling distributions of the parameter
estimates were incorporated in the prediction model.
Dealing more formally with the differences between
deterministic and stochastic prediction, Mariano and
Brown (1983) showed in a general nonlinear setting
that using deterministic predictors yield asymptoti-
cally biased and inefficient forecasts even when pa-
rameter estimates are consistent, and that the asymp-
totic mean squared prediction error for stochastic
predictors is less than that of deterministic predictors.
Similarly, Blattberg and George (1992) showed that
using parameter point estimates from one model as
inputs into a subsequent decision model (e.g., an
estimated demand model as an input into a profit
maximization problem) may also lead to suboptimal
decisions.

The intuition for these results arises from the well-
known fact that E[g(x)] # g(E[x]) except in very
special cases (e.g., g is linear). Therefore, substituting
the expected values of the parameters, which are
themselves random variables, into a nonlinear func-
tion to form a prediction will not yield the expected
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value of the function. In our particular application,
multinomial logit (MNL) models, it is generally the
case that the market share of small share brands will
be underestimated while those of dominant brands
will be overestimated by deterministic prediction.

The distinction between deterministic and stochas-'

tic prediction arises only in a neoclassical, or frequen-
tist, estimation context. The Bayesian practice of re-
porting predictive distributions instead of point
estimates circumvents the deterministic prediction
problem." Yet, maximum likelihood methods, for bet-
ter or worse, remain the standard in software pack-
ages which estimate multinomial logit models.

The problems associated with deterministic predic-
tion are all the more troubling for marketing research-
ers. Models estimated with scanner data are often
used to make predictions about market share under
various marketing mix scenarios. Logit models used
in conjoint market share simulators are used to predict
a new product’s market share given different potential
new product designs. Further, there is an increasing
trend in marketing towards estimating choice models
at lower levels of aggregation (Rossi and Allenby
1993) as well as estimating-models which are more
structural in their representation of consumer behav-
ior (Erdem and Keane 1996, Goniil and Srinivasan
1996). These trends have led to models with a greater
number of parameters and hence greater dispersion in
the sampling distributions of those parameters.

The most straightforward way to develop a stochas-
tic predictor for a multinomial logit model is to
directly evaluate the expression

ék = EB[gk(Bkr x)]

Bixk

) j o J O

where f;(B) is the joint p.d.f. of the parameter esti-
mates for the products in the competitive set and x, is
the vector of attribute values (e.g., the value of the

(1.2)

' For some examples of marketing applications utilizing Bayesian
estimation, see Arora et al. (1998) and Rossi et al. (1996).

1138

marketing mix variables) for product k.? In most
scanner data and conjoint applications of the logit
model, f3(B) is specified as a multivariate normal
density since sample sizes are assumed large enough
to invoke the asymptotic normality of the estimates.
Even though the multinomial logit function and mul-
tivariate normal p.d.f. have closed form expressions,
(1.2) cannot be evaluated analytically and must be
approximated by using a numerical integration tech-
nique such as Gaussian quadrature. Similarly, boot-
strapping approaches, which generate the empirical
sampling distribution of the estimates without resort-
ing to asymptotic approximations, are a reasonable
approach to stochastic prediction when the researcher
has reason to believe that asymptotic theory provides
a poor guide (i.e., small sample size). Yet, both numer-
ical integration and bootstrapping require consider-
able computation time to evaluate and hence are
difficult to implement in popular software packages
where solution speed is an important issue.’ Faced
with an expression that is impossible to evaluate
analytically and difficult to evaluate numerically,
scanner data research and conjoint research have
chosen to ignore this problem and proceed with
deterministic prediction.

This research provides a practical solution to this
problem. We develop a simple and computationally
efficient approach to implementing a simulation-
based solution to the theoretically correct (stochastic)
market share prediction in a multinomial logit frame-
work. We show that this approach would be very easy
to implement in industrial applications while closely
approximating other, more computationally intensive
stochastic prediction methods. First, however, to fix
the intuition for the problem at hand, we set out a
simple example.

Consider a marketplace where there are two com-

?In many scanner data applications the response parameters § are
assumed to be constant across different choice alternatives.

®We note that some recent marketing material distributed by
Sawtooth Software, Inc., developer of several popular conjoint
analysis packages, indicated that it was not planning on widely
distributing an updated, and in many respects better, version of one
of its software modules because for many applications the solution
time would be 20-30 seconds slower.
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peting products (p = 1, 2), each defined by a set of
attributes. Through observing consumers’ choices a
market researcher has been able to estimate the pa-
rameters of the model and compute the logit utilities
of these products.* Define , as the utility of product
pand X as the 2 X 2 variance-covariance matrix of the
utility estimates. Let

) ) Nl -0.1
i, =3, i, =4, and 2, = [ 90?- 0.25 ]

Given these parameter estimates, the conventional
way to predict the market share of Product 1 would be
to follow (1.1) and evaluate

R e?

1= g 13)
which yields 5, = 0.2689 which we will refer to as the
the deterministic prediction. Stochastic prediction for
this estimated model requires evaluating

A e"
5, =[ f mf(up u)dudu,,  (1.4)

u u2

where f(u,, u,) is the bivariate normal density of the
utility estimates. Evaluating this expression by numer-
ical integration yields 5, = 0.2920 which shows that
the deterministic prediction has a difference of about
0.0231 or 2.31% in total market share. This is a signif-
icant discrepancy relative to the 29.2% market share
prediction.

The intuition for why this discrepancy occurs is
captured in Figure 1. The logit function depicted in
this figure was generated by setting u, = 4 and
calculating the logit market share prediction for Prod-
uct 1 over various values of u,. Also depicted is the
normal density N(3, 0.16) corresponding to the sam-
pling distribution of u, in the example. Deterministic
prediction involves evaluating the logit function at the
value of u, corresponding to the expected value of its
sampling distribution (in this case, u, = 3). Stochastic
prediction determines the expected value of the logit

‘In §3.2, we will lay out how to move from the means and
covariance matrix of the parameter estimates B to the means and
covariance matrix of the estimated utilities u.
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Figure 1 Intuition for the Two-Product Example
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function over the entire sampling distribution of u,.
Because the normal distribution is symmetric about u,
and the logit function is locally convex when u, < 4,
Jensen’s Inequality suggests that the deterministic
prediction will be less than the stochastic prediction.
Likewise, if the point estimate of u, is such that u,
> 4, deterministic prediction would produce a market
share greater than that of stochastic prediction.

2. A Monte Carlo Approach to
Stochastic Prediction

2.1. Overview )

Monte Carlo integration is a simulation-based ap-
proach to evaluating integrals. The standard Monte
Carlo approach involves taking random draws from
the joint sampling distribution of the parameters,
evaluating the objective function (in this case, the
market share of each of the competing products) at
each of these draws, and finally taking the arithmetic
mean of these evaluations. This approach has been
refined through a number of variance reduction tech-
niques (VRT) aimed at reducing the number of draws
necessary to achieve a given level of precision. One of
these techniques, which is based on the use of anti-
thetic variates, is particularly well suited to the appli-
cation at hand and we will implement it as a way of
increasing the efficiency of our Monte Carlo approach.
Before we lay out this approach we show how to
exploit some well-known properties of the parameter
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estimates to reduce the dimensionality of the simula-
tion problem.

2.2. Transforming the Sampling Distribution of
the Parameters to the Sampling Distribution
of the Utilities

The computation time associated with numerically

evaluating (1.2) via Monte Carlo integration is approx-

imately linear in the dimensionality of the parameter
space. We can reduce the dimensionality of this com-
putation from R, the number of parameters, to N, the
number of competitive products, by exploiting the
asymptotic normality of the parameter estimates as
well as some standard properties of variances and
covariances. In most applications, the number of pa-
rameters will exceed the number of products in the
competitive set and so this transformation will lead to

a more efficient formulation. Define i1, = 3%, 8,x,, as

the point estimate of the utility for product k.° Given

B~°N(B, 3p) this directly implies that the utility

estimates are distributed according to u ~ “N(%, Z,)

where the diagonal elements of the covariance ma-

trix %, are given by

R
Var(uy) = 2, x% Var(8,)

r=1

R R
+2 2 2 aaxe Cov(BaBr), (1)
r=1 r'<r,
and the off-diagonal terms, the covariances between
the estimated utilities of any two products k, k', k # k'
are given by

R R
Cov(uuy) = Z Z XX Cov(BuBri). (2.2)

r=1 r'=1

Depending on the particular application, reducing the
dimensionality of problem in this fashion can signifi-
cantly reduce the computation time for generating
accurate stochastic predictions. In highly parameter-

* Most high involvement choice models are derived from Luce’s
Axiom (1959). In these derivations, the “utility” in Luce’s model is
linked to the parameters and variables in exactly the same fashion as
shown here.

1140

ized models, this dimension reduction technique may
be critical for practical computation of the stochastic
predictions. From here forward we will refer to the
distribution of the utilities directly instead of the
parameters themselves.

2.3. Monte Carlo Simulation with Antithetic
Variates (MCAYV)

Formally, we take D draws, denoted by u“, d
=1, ..., D from a multivariate normal distribution.
u® ~ N(&, ,), where # is the vector of utility point
estimates and X, is the covariance matrix of these
estimates as derived in the previous section. We then
construct D antithetic variates u® from u® = 21
— 4", Notice that in MCAYV each draw u" is used
twice, once directly, and again in the form of its
antithetic variate. Define

(4} . (@
k

By
. A —
v — and Sﬁ)—- 5

SN e
ford=1,...,D. (2.3)
Define [, as the expected value of market share for

product k. Computing this expectation by MCAV
proceeds by

. 1
Ik=

2.4)

ol

D
Z HSP +5).
d=1

The theoretical advantage of MCAV over standard
Monte Carlo sampling is evident from examining the
variance of I,. Given that the D draws are iid., in
standard Monte Carlo sampling Var({,) = Var(S®)/
D, since Var(S{") is the variance of any draw. Because
of the way that the antithetic variates are formed,
Var(S{®) = Var(5{?) for any 4 and because the draws
are iid., Cov(SS{") = Cov(S{SF) = Cov(s@$7)
= Cov(5P5{)) = 0 for any d # f Thus, it is
straightforward to derive Var(l,) for MCAV as

Var(S{?) + Cov(S{25®)

Var(fk) = 5D

(2.5)
Even if the covariance between a draw and its anti-

thetic variate is zero (i.e., Cov(SMS®) = 0) Var(l,) is
reduced by a factor of two. This is not surprising since
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the logit function S, is evaluated twice for each draw.
The real benefit of MCAV stems from the negative
correlation that is usually induced between each draw
and its associated antithetic variate. This negative
correlation gives rise to negative covariances between
associated market share evaluations (i.e., Cov(S{"S{®)
= 0) and hence, directly from (2.5), reduces Var(f .6

2.4. Model Validation

In §§2.1-2.3 we detailed an implementable method for
computing stochastic predictions in a multinomial
logit model. We now wish to validate this approach in
terms of its predictive accuracy in industrial settings.
Rather than present results from carefully chosen
datasets that strongly support our approach, we con-
struct a set of experiments designed to explore the
predictive accuracy of this stochastic prediction over a
wide range of possible parameter values.

The parameter values chosen for these experiments
are intended to reflect those values typical of indus-
trial applications. We have derived parameter values
from publicly available datasets as well as other
private datasets and we believe that the parameter
values in the experiment detailed below are represen-
tative of those found in practice.

To compare the approach that we ultimately advocate
with other competing approaches, we simulated the
underlying product attribute data (x), not the utilities
directly, so that the response parameters (8) could be
estimated for different simulated data sets. We simu-
lated five attributes and one brand-specific constant for
each brand. Since the scale of attribute variables and
estimated response parameters varies widely in indus-
trial data sets we report the distribution of the resulting
estimated utilities and utility covariance matrices. That
is, we simulated the underlying data such that, after
estimating the response parameters and performing the
dimension reducing transformations in §2.2, the result-
ing estimated utilities and utility covariance matrices

- follow the distributions described below.

Specifically, we designed an experiment consisting
of a three-product market. Thus, for each scenario we

“For a detailed dascripﬁori of antithetic variates, see Law and
Kelton (1991, pp. 628-634).
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estimated 17 parameters.” We generated 80 three-
product scenarios following the parameter distribu-
tions described below. After estimating the parame-
ters, each scenario provided a vector of aggregate
product utility estimates and an estimated matrix of
utility covariances. Of these scenarios, 40 contained
100 sample observations while the remaining 40 con-
tained 1,000 sample observations. Because the recom-
mendations we detail later rely on the asymptotic
properties of the estimates, choosing a large sample
size of 1,000 is conservative since almost all industrial
data sets, including relatively small conjoint data sets,
are at least this large. Our experimental design is as
follows.

o The utility estimates for the three products are u,,
i = 1,2, 3. In our experience, the range of differences
between the utility estimates of products within a
competitive set does not exceed six. Since the market
share prediction is driven not by the value of the
utility estimates themselves but rather by the differ-
ence in utility values u; — u;, for products i, j within
a competitive set, we constructed the computational
study such that the utility estimates range between

zero and six as follows: u; U{O 6], where U

denotes the uniform distribution.?

« The variances of the utility estimates for product
i are 0, In our experience, most variances of the
utility estimates are less than 0.5 while a few range as
high as 1.5. Consistent with this experience we chose a
distribution for the variances such that 80% of the

.density lies uniformly between 0 and 0.5 with the

remaining 20% lying uniformly in the interval 0.5 to
1.5. It follows that the density function of the variance
of the estimated utilities is

1-6, OSG',';<O.5,
0.2, 0.5=o0;<1.5,
0, otherwise.

f(o'ii) =

« The covariances between the utility estimates for
products i and j are o, i # j. Our experience is not much

" The number of parameters is equal to the number of products
multiplied by the number of attributes per product less one brand-
specific constant. In our application (3 * 6) — 1 = 17.

® The range selected for the utility values is sufficient to allow
market shares to range between 0.2% to 99.5%.
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Table 1 Resuits of Monte Carlo Experiments
Mean Rel. Mean 35% C. I Mean Rel. Mean 95% C. L. CPU

Predictions Emor-SS Half-width-SS Emor-LS Half-width-LS seconds
Deterministic 9.60% * 6.63% “ *
MC(1,000)" 0.74% 3.17+10™ 0.10% 59610 0.16
MC(100,000) 0.58% 3.18+10™ 0.05% 5.95=10~* 15.74
MCAV(1,000) 0.58% 225107 0.03% 42010 0.02
MCAV(100,000) 0.52% 2.25=10™ 0.02% 421%10"° 3.60
Numerical integration 0.83% * 0.70% * 340.34
Bootstrapped * * > * 1834.84

¥ MC(D) refers to prediction using Monte Carlo method with D draws while MCAV(D) describes the Monte Carlo method with antithetic variates.

of a guide in setting these parameter values. We have
observed both positive and negative covariances in scan-
ner datasets. We have often observed covariances close
to zero in conjoint datasets where orthogonal (D-opti-
mal) experimental designs tend to produce uncorrelated
utility estimates. Since these covariances may vary
widely across datasets we allow the covariance param-
eters in our computational experiment to vary widely as
well. Specifically, o, i # j is distributed as follows:
5 5a U["' VOiiTji, \}O’,‘,'O'j"] with 0 = 0y and SUbjeCt
to the restriction that the resulting covariance ma-
trix X, is positive semidefinite. This range spans the
space of possible covariances since any o; outside
this range would violate the positive semidefinite
requirement of a covariance matrix. ,

With three products for each of the 80 scenarios,
this experiment resulted in 240 market share obser-
vations for which we can examine market share
predictions generated by: (1) the deterministic
method, (2) Monte Carlo integration, (3) MCAV
with the dimension-reducing transformation, (4)
numerical integration by Gaussian quadrature, and
(5) bootstrapped sampling distributions. The results
are summarized in Table 1 where “SS” indicates
results for the small sample scenarios, and “LS,” the
large sample scenarios.

We define relative error as the ratio of the difference
between the predicted market share and the stochastic
prediction obtained via bootstrapping to the boot-
strapped stochastic prediction. We report the mean
relative error, with the mean taken over the 120
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market share observations for each sample size. In
each of the Monte Carlo experiments, it is possible to
obtain not only the point estimate of the market share,
but also a confidence interval on the estimate. Given
the sample variance S* over the D draws, the half-
width of the confidence interval centered around the
point estimate at an « level of confidence is #,_;,_,,
2V 5%/D. Finally, we report all mean computation
times in CPU seconds for a three-product scenario
measured on a Sun SPARCstation 20/61.°

It is clear from Table 1 that as we increase the
number of draws, the MCAV method provides sub-
stantial improvements in predictive accuracy at a very
modest computational cost. For example, in our large
sample experiment with 100,000 MCAV draws we
decrease the mean relative error from 6.63% to 0.02%
compared with deterministic prediction. This gain
comes at the cost of only 3.60 seconds of computation
time. While we feel that 100,000 draws imposes a very
minimal computational burden on the user, note that
the users themselves can make the trade-off between
computation time and accuracy. For the large sample
size experiments, the MCAYV closely approximates the
bootstrapping solution but with a minimal amount of
computation time. This directly implies that the nor-
mal approximation required by the MCAV procedure

® The difference in computation time between the large and small
sample experiments was negligible. Therefore, we report only CPU
times for the large sample experiments.
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is not restrictive.” As expected, in smaller samples the
accuracy of those prediction methods which rely on
asymptotic approximations deteriorates. Further, Ta-
ble 1 indicates that MCAV with the dimension reduc-
ing transformation provides benefits over the stan-
dard Monte Carlo approach. For this set of
experiments, MCAV was on average 8.8 times faster at
producing predictions of equal accuracy to standard
Monte Carlo.

Finally, the value of stochastic prediction hinges on
the variances and covariances of the product utility
estimates. Typically, the difference between determin-
istic and stochastic prediction will increase in the
variances of the utility estimates. The variance of the
utility estimates themselves increase in the number of
parameters present in the model as well as the vari-
ances of the individual parameter estimates (2.1).
Further, positive covariances among the product util-
ities tends to dampen the difference in the market
share predictions between the two prediction methods
while negative covariances tend to exacerbate it. These
negative covariances often arise in models where the
analyst allows brand-specific coefficients for market-
ing mix variables (i.e., the price coefficient is allowed
to vary across brands) instead of constraining them to
be the same across all brands.

2.5. Step-by-Step Guide to Stochastic Prediction
for Multinomial Logit Models

Given the above discussion, we believe it is reasonable
to recommend the MCAV approach with the dimen-
sion reducing transformation for developing stochas-
tic predictions with MNL models in most marketing
applications. Only when sample sizes are quite small
does moving to the empirical sampling distributions
by bootstrapping offer significant benefit. We now lay
out a step-by-step procedure for developing stochastic
predictions by MCAV.

Step 1. Estimate the parameters of the MNL model
along with the covariance matrix of these parameters
using maximum likelihood.

" We performed Kolmogorov-Smirnov tests for normality of the
resulting sampling distributions. In our large sample experiment, all
bootstrapped sampling distributions were accepted as normal by
this test. '
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Step 2. Compute the estimated product utilities i,
= IR, Bax; where k indexes the products and r
indexes the variables included in that product’s utility
function.

Step 3. Compute the covariance matrix of these
utilities %, by substituting the parameter estimates
and covariances into Equations (2.1) and (2.2).

Step 4. Take D draws (we recommend at least
10,000) from a multivariate normal distribution, u
~ N(u, ,), and save each of these draws.

Step 5. For each of these k-dimensional utility draws
compute a k-dimensional antithetic variate by u®
= 2u — u'.

Step 6. For each utility draw and each antithetic
variate draw compute a market share evaluation for
each brand by substituting the draws into the 5 and
S® expressions in Equations (2.3). You will now have
2D market share evaluations, where D is the number
of original utility draws. _

Step 7. Compute the stochastic prediction for the
market share of each brand by substituting the market
share evaluations computed in Step 6 into Equation
(2.4).

3. Summary

The problems associated with deterministic prediction
have been largely ignored by many marketing re-
searchers and practitioners. Deterministic prediction
ignores the sampling distributions of the parameter
estimates and can lead to asymptotically biased and
inefficient forecasts.

This paper proposed a practical solution to this
problem. We developed a simple and computationally
efficient approach to implementing a simulation-
based solution to the theoretically correct (stochastic)
market share prediction in a multinomial logit frame-
work. This method allows us to circumvent the defi-
ciencies of deterministic prediction at a reasonable
computational cost. An experimental study suggested
that, within the range of parameter values found in
many applications, the MCAV approach rapidly offers
substantial increases in predictive accuracy over de-
terministic prediction. As more disaggregate and
structural choice models emerge, we expect our ap-
proach to yield even greater benefits."
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