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Presence of Customer Learning

Abstract

Consider a firm that sells identical products over a series of selling periods (e.g., weekly

all-inclusive vacations at the same resort). To stimulate demand and enhance revenue, in

some periods, the firm may choose to offer a part of its available inventory at a discount.

As customers learn to expect such discounts, a fraction may wait rather than purchase at a

regular price. A problem the firm faces is how to incorporate this waiting and learning into

its revenue management decisions.

To address this problem we summarize two types of learning behaviors and propose a

general model that allows for both stochastic consumer demand and stochastic waiting. For

the case with two customer classes we develop a novel solution approach to the resulting

dynamic program. We then examine two simplified models, where either the demand or the

waiting behavior are deterministic, and present the solution in a closed form. We extend

the model to incorporate three customer classes and discuss the effects of overselling the

capacity and bumping customers. Through numerical simulations we study the value of

offering end-of-period deals optimally and analyze how this value changes under different

consumer behavior and demand scenarios.



1 Introduction

The rapid growth of online purchases of airline tickets and other travel-related products has

presented the travel and leisure industry with a number of challenges and opportunities.

These include the need to develop the capability to rapidly change prices and availability

of inventory, track and respond to competitor moves, and address changes in consumer

behavior. This growth has also provided the capability to offer inventory that is not selling

at the expected rates, so called “distressed” inventory, at a discount in the days prior to

a departure of a flight or other product: hotel room night, vacation package, weekend car

rental, etc. Although frequently referred to as the “last minute” deals, such discounts are

often offered days or weeks prior to the departure; for example, the lowest airfares are

observed 3-8 weeks prior to departure, Stringer (2002).

Such end-of-period period discounts present an opportunity to purchase products at

noticeably lower prices and consumers are taking advantage of the offers. For example, a

quick Web search for a week-long all-inclusive vacation for an approaching weekend in the

Fall of 2009 produced choices for less than $400; this compares with prices in excess of

$1,000 offered for the vacation months in advance. Increasingly, many travelers are learning

to expect such end-of-period discounts and “prefer to book later in the hope of getting a

good deal” (Fenton and Griffin 2004). According to American Express, “nearly half of all

travelers say they intend to wait until the last minute to plan their vacations” (De Lisser

2002). Similarly, in private conversations, executives of a leading vacation tour operator

noted that as a result of customer waiting for deep discounts, early bookings are “slow” and

27% of the bookings are made in the last 15 days. That is, travel firms are observing that as

customers increasingly expect end-of-period discounts, additional inventory is distressed. As

a result firms sell more units at a discount and lose revenue. This suggests that firms should

carefully consider consumer response and incorporate it into their management policies.

The goal of this paper is to develop a stylized model that incorporates consumer response

to revenue management. In this paper, we assume a travel firm (airline, car rental firm,

hotel, etc.) needs to determine the number of units (seats, cars, rooms, etc.) to place on

sale at the end of each of number of a selling seasons (flights, weeks, etc.) that we refer to as

periods. (Note, that the term period refers to different flights, not the slices of time during

the sales of a single flight.) The objective of the firm is to maximize the total discounted

revenue over the horizon. In each period, a fraction of the customers purchase at a regular,
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non-discounted price and a fraction waits for a potential end-of-period sale. Customers who

wait, but do not receive inventory at the discounted price, may be offered inventory for

purchase at a higher price at the end of the same period. The decision made by the firm

is to determine the number of units (if any) to put on sale in each period, understanding

that the fraction of customers that wait for a sale in the following period is affected by the

decision in the current period.

We assume the discounted price is fixed, and the firm determines the number of units

available at this price. Such a quantity-oriented approach is dominant in the travel industry

as opposed to a price-changing approach which is more common in other industries such as

retailing (Talluri and van Ryzin 2004). We consider model variations with two and three

prices in order to derive insights about the optimal polices. In practice, one would implement

revenue management with more price levels, e.g., hotels and cruise lines typically use 6-8∗.

Our initial model with two prices (and two customer classes) models such industries as

packaged tours and performance events, where a common practice of pre-publishing prices

in catalogs effectively reduces the firms’ ability to increase prices in the case of high demand.

Our subsequent model with three classes captures the examples of airlines, car rental firms,

and hotels that can increase their price if there are customers willing to spend more for the

product.

The fundamental contribution of this paper to the literature is the proposal and solu-

tion of a model of revenue management that incorporates consumer response to a firm’s

policy. Our model is distinguished from previous work in a number of directions. First

and foremost, we model a series of repetitive revenue management decisions that influence

customers’ behavior for the future periods as consumers learn in this multiple period envi-

ronment. The vast majority of the literature considers a single selling period (flight, etc.),

and effectively ignores the possible effects on future periods. Second, we incorporate the

double uncertainty of stochastic demand and stochastic consumer behavior. We show that

the resulting dynamic programming model is not amenable to standard solution methodolo-

gies and make a theoretical contribution by presenting a solution methodology to a subclass

of dynamic programs in which the state of the system evolves non-monotonically. Third,

we derive the optimal, closed form policies for several simplified models, and through nu-

merical studies we document the degree to which the optimal solution provides benefits

∗Source: private conversation with a manager at a leading revenue management software firm.
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over reasonable rule-based heuristics. Finally, we discuss the effects of different patterns of

behavior with respect to the types and speed of learning, and with respect to the allowance

of customer bumping.

The paper generates several managerial insights. First, we show that in the long-run a

firm benefits by offering end-of-period discounts, even when consumers learn and react to

the firm’s decisions by waiting. The optimal policy, however, greatly depends on the way

customers learn. If customers self-regulate their waiting behavior (e.g., recognizing that if all

customers wait, no discounts will be provided), then the firm’s policy is a passive one, where

the firm puts some inventory on sale in every period. However, if the fraction of customers

waiting for a discount evolves by interpolating or smoothing between its current state and

some measure of the number of units placed on sale, then the firm takes an active policy.

We show that a “bang-bang” policy, where the firm intermixes periods with many units on

sales with those with none, is optimal. Second, we show that allowing some inventory to

perish (and not be sold) may be more profitable than selling it at a discount. Third, we

show that even in the absence of no-shows, overselling the capacity and bumping passengers

may be an important factor in managing consumer behavior. Finally, we demonstrate that

an intuitive heuristic that makes inventory available at a discount when regular sales are low

performs rather poorly; in fact it does the opposite of what should be done when consumers

learn and react to firms’ inventory policies.

The remainder of the paper is organized as follows. In Section 2 we position our model

in the body of relevant literature. In Section 3 we introduce the model and discuss key

assumptions. In Section 4 we study the optimal policy for two customer classes under the

assumption of “self-regulating” learning, and present the solution to the resulting dynamic

program. The case of “smoothing” learning is discussed in Section 5, where we introduce

two simplifications to our general model and present their optimal policies in the closed

form. In Section 6 we extend our models to the case with three customer classes, and

discuss the effects of bumping on customer behavior and on the resulting optimal policy

of the firm. Numerical results are presented in Section 7, followed by the conclusions and

prospects for future research. The paper is accompanied by online Appendices that contain

additional model discussions, proofs, and two model extensions.
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2 Literature Review

As revenue management has been an active area of research, we review only the literature

directly related to the current study. McGill and van Ryzin (1999), Bitran and Caldentey

(2003) and the book by Talluri and van Ryzin (2004) provide comprehensive reviews of

the broader literature. Most previous research focusses on pricing and inventory policy for

either a single flight or product, or a network of flights or multiple products, where strategic

response by customers to the determined policy is ignored.

Relevant work that considers multiple selling seasons includes papers on intertemporal

price discrimination and advance selling, such as Stokey (1979), Sobel (1984), and Conlisk et

al. (1984). A summary of retail pricing can be found in Lazear (1986). Besanko andWinston

(1990) and Gale and Holmes (1993) discuss the optimal price skimming by a monopolist.

Dana (1999), Xie and Shugan (2001), and Tang et al. (2004) discuss advance selling. These

works do not consider customer learning and in this regard are different from ours. Customer

learning is often modeled through reference price effects; for example, consider Greenleaf

(1995) and Popescu and Wu (2007). These models do not consider the internal dynamics of

selling to several classes of customers within each selling season, which is a major feature of

revenue management systems. Sen and Zhang (1999) consider a newsvendor problem with

two customer classes whose price assumptions are similar to our single period model; they

do not study repetitive problems and customer learning.

Recently, a number of papers (Aviv and Pazgal 2008, Cachon and Swinney 2009, El-

maghraby et al. 2008, Gallego et al. 2008, Liu and van Ryzin 2008, Zhang and Cooper

2008) consider customer behavior with respect to markdown policies. In our model the

firm does not pre-commit to a price path as in these papers. We allow the firm to decide

whether there should be a markdown, markup or both: a markdown could happen if all

unsold inventory is put on sale, a markup could happen if no inventory is put on sale, or

the price path could be a markdown followed by a markup. Further, these papers consider

only a single selling period.

Several papers allow for both markups and markdowns. Asvanunt and Kachani (2007)

consider the purchasing strategy of a single strategic consumer and model her waiting de-

cision as an optimal stopping problem. They also report an empirical study demonstrating

practical effectiveness of their solution. Their extension to the case with multiple strate-

gic consumers assumes that consumers are oblivious to other strategic buyers. Levin et
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al. (2010) allow each consumer to consider their effect on the others, but assume that the

future utility of a unit is the same for all consumers. In contrast we assume that cus-

tomers’ willingness-to-pay is constant through the selling season and that the firm rations

the discounted units.

Su (2007) considers a game between the firm and a fraction of consumers who act

strategically and shows how the size of this fraction determines whether the firm should

increase or decrease the price. Anderson and Wilson (2006) also assume that an exogenous

fraction of customers will wait. These works, however, do not specify how the fraction of

customers who act strategically is determined. In contrast, this is a key feature of our

model, where a fraction of customers who wait is changing, as consumers learn from past

decisions of the firm.

All of the above mentioned works assume a single period in which the derived equilibrium

policies of the firms and customers are arrived at after a process of learning and reacting.

These works do not recognize the possible dependency between the outcome of one selling

season and the behavior of consumers in the future seasons, conveyed, for example, via

news articles, information on websites or word-of-mouth. Our work presents a model with

multiple selling periods and captures this dependency.

Three works consider a multiple-period setting similar to ours. Cooper et al. (2006)

model the “spiral-down” effect and demonstrate that in a multiple-period problem with

customer learning the effect of otherwise optimal (single-period) revenue management pol-

icy could be significantly diluted. Gallego et al. (2008) investigate a model in which a

firm’s decision about the number of units sold at a discount alters consumers’ expectations

about the probability of acquiring a discounted item in the future. They demonstrate nu-

merically that the optimal inventory policies could evolve from one period to the next in

a complex fashion that cannot be captured by a single period model. Liu and van Ryzin

(2009) consider a case where consumers learn about firm’s capacity using a moving average

smoothing process, and decide whether to wait for a possible markdown or not. In contrast

with the previous paper, however, they find that the optimal policy converges to either a

rationing equilibrium (with a high early purchase price and a low markdown price) or a

low-price-only equilibrium. Our approach is more general than the above: we do not limit

ourselves to markdowns, consider alternative learning processes, incorporate the effects of

overselling/bumping on consumers’ propensity to wait, and allow for stochastic demand
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from multiple customer classes. We present our model next.

3 Model

Consider a sequence of identical offerings of a perishable product or service, for example,

weekly all-inclusive vacations at the same resort, Wednesday morning flights from London

to New York, or weekend car rentals. To distinguish between the copies of the product

offerings, we say that they are offered in different periods, and there is one offering per

period. In each period t = 1, 2, ...T , for finite T , there are N units of product available. For

simplicity, we treat all demands and capacities as continuous variables, and assume that for

∆ > 0, ∆ units of inventory fill ∆ units of demand.

We initially assume that there are two prices, p2 ≥ p1, and two customer classes, such

that pi, i = 1, 2, is the highest price that class i is willing to pay for the unit of product,

i.e., class-1 is the lower class customer and class-2 is the higher class. Later, in Section 6,

we present an extension to three prices/customer classes.

Let Qi
t(Yt), i = 1, 2 be the demand for class-i and let Dt(Yt) = Q1

t (Yt) + Q2
t (Yt) be the

total demand (at price p1, note class-1 customers do not purchase at p2). Here Yt is a ran-

dom demand parameter, reflecting, for example, weather, exchange rate or other exogenous

factors that influence the demand. Since naturally demand from different classes can depend

differently on those factors, we assume that Yt = {Y j
t }Jj=1 is a vector of random variables

with joint CDF FY (y), defined on a finite, convex set Y ∈ ℜJ . Such construct allows us to

capture correlations between demand classes; see Section 8. We assume Q2
t (Yt) < N for all

Yt ∈ Y in order to avoid trivial cases when all capacity is sold and hence no discounts and

learning are possible.

As in other models in the literature, some class-2 customers may wait for a discount that

may be offered to attract class-1 customers at the end of the period. In line with earlier

works (e.g., Pfeifer 1989) we refer to these diverting customers as “shoppers.” However, a

key feature of our model is that their waiting behavior changes over time in response to

the firm’s decisions. We assume that consumer waiting behavior is described by a waiting

parameter, θt, that represents the propensity of customers to wait for a discount. For

example, there could be a random fraction, αt, of class-2 customers waiting and θt could

be the average fraction waiting (this is the construct we use in our simplified models). The
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Figure 1: Timeline of the model.

waiting parameter θt changes over time capturing customer learning. We assume that θt

is known at the beginning of period t. The dynamics of the selling period are depicted in

Figure 1.

The firm initially sets the price at p2 and observes the initial sales, St to class-2 customers.

The remainder of class-2 customers, Mt, are shoppers who wait for a potential discount

towards the end of the period; note St + Mt = Q2
t . Class-1 customers as per Cachon

and Swinney (2009) are “bargain-hunters”: they do not act strategically and rather all

wait and purchase only if price p1 is offered. The total demand at price p1 therefore is

Dt(Yt)− St ≡ Q1
t +Mt.

At a point in time close to the end of period t, denoted as the sale time, the firm

determines xt, the number of unsold units to put on sale at price p1, xt ≥ 0. If xt ≥ Q1
t +Mt

then all waiting demand is satisfied and the firm receives revenue of p2St + p1xt and moves

to the next period. Otherwise, the firm can receive additional revenue by accommodating

the unserved class-2 shoppers as follows.

Let Bt(St, xt, Yt) be the number of unserved class-2 customers. We assume that once all

xt discounted units are sold, the firm again offers units for sale at price p2 to accommodate

unserved class-2 shoppers (or in the three prices extension, Section 6, at a higher price p3).

In some industries, for example in airlines, it is common to oversell the capacity, forcing

some customers to be “bumped”, i.e., displaced from their seat by another, typically higher

paying, customer. In such cases with bumping we assume that if Bt exceeds the number of

unsold units, (N −St−xt), customers that purchased at a discount are bumped; their units

are sold at price p2 (or p3 in the three prices model) and the firm incurs a penalty pC per

unit bumped. In other industries, for example in cruise lines, only unsold units may be sold
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at this time. This may occur because of competitive norms, legislation or regulation, or for

logistical reasons, such as when a physical object is sold. Letting pC = p2 (or p3 in the three

prices model) accomplishes this goal as there is no economic justification for overselling.

Thus in cases without bumping the potential demand, Bt − (N − St − xt) is lost.

Observe that there are incentives for class-2 customers to purchase early. Without

bumping class-2 customers may not be served and presumably they would prefer to purchase

at p2 rather than not. With bumping, class-2 customers that purchase a discount seat are

subject to bumping. We assume that bumped customers cannot repurchase a unit in the

same period – this is a reasonable assumption supported by discussions with travel industry

personnel (see model discussion in Appendix A).

The total revenue of the firm net the bumping cost for period t given (St, xt, Yt) is

gt(St, xt, Yt) =p2St + p1min[xt, Dt(Yt)− St] (1)

+ p2Bt(St, xt, Yt)− pC (Bt(St, xt, Yt)− (N − St − xt))
+ .

For notational convenience let Ŷt ≡ Yt|(θt, St) represent the conditional random vector

Yt having observed St and knowing θt. The expected single-period revenue in period t is

then given by:

rt(θt, St, xt) =

∫
Y
gt(St, xt, y)dFŶt(y). (2)

where FŶt(y) ≡ FYt|(θt,St)(y) is the cdf of Ŷt.

We refer to the 2-vector (θt, St) as to the state of the system. We assume that the system

evolves based on the decision xt according to a function h(θt, xt), defining θt+1, and a ran-

dom draw of St+1 from the distribution of future sales, FSt+1|θt+1(·). We refer to h(·) as the
learning function because it reflects the changes in the waiting behavior of the customers

as they learn about the policy of the firm. We define two types of the learning functions:

(i) smoothing, if ∂h
∂x

≥ 0 and ∂h
∂θ

≥ 0, e.g., h(θ, x) = λ x
N
+ (1− λ)θ for 0 ≤ λ ≤ 1;

(ii) self-regulating, if ∂h
∂x

≥ 0 and ∂h
∂θ

≤ 0, e.g., h(θ, x) = κ + λ x
N

− (1 − λ)θ for {κ, λ >

0|κ+ λ ≤ 1}.

We note that the current literature, e.g., Popescu and Wu 2007, Liu and van Ryzin

2009, considers smoothing dynamics in the parameters of the aggregate demand model. By

presenting alternative learning mechanisms, we consider broader cases and derive additional

insight; see more discussion about learning behaviors in Section 8.
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The objective of the firm is to maximize the expected T -period revenue, discounted at

a fixed rate δ ∈ (0, 1). Therefore, the firm determines the number of units on sale, xt, for

each period t = 1, 2, ..., T and some initial θ1, by solving the following dynamic program

Jt(θt, St, xt) = rt(θt, St, xt) + δESt+1|θt+1

[
J∗
t+1(θt+1, St+1)

]
(3a)

subject to

J∗
t (θt, St) = max0≤xt≤N−St Jt(θt, St, xt),

θt+1 = ht(θt, xt),

J∗
T+1(θT+1, ST+1) = 0 for all (θT+1, ST+1).

(3b)

We refer to (3) as to the general model, as it expresses the uncertainty in the overall

demand as well as in the fraction of class-2 customers waiting in every period. In Sections

5.1 and 6 we consider simplified models, where one of these uncertainties is removed.

We approach the problem by establishing properties of Jt(θt, St, xt), in particular con-

cavity and supermodularity. To do so, we make several assumptions on the demand and

stochastic ordering of the random variables. Specifically, recall that a random variable X

with cdf FX(x, θ) is said to be stochastically increasing (decreasing, convex, concave, super-

modular, etc.) in parameter θ iff 1 − FX(x, θ) is increasing (decreasing, convex, concave,

supermodular, etc.) See sections 2.2 and 3.9.1 in Topkis (1998) as well as Shaked and

Shantikumar (1994) for more discussion about stochastic ordering, examples, and applica-

tions. We assume that demand function Dt(Yt) is increasing in Yt. We assume that (i)

St is stochastically decreasing in θt; (ii) Ŷt is stochastically increasing in St; and (iii) Ŷt is

stochastically increasing in θt.

These assumptions are consistent with the following intuitive observations. Since θt

measures the propensity of customers to wait, the number of customers who purchase (i.e.,

do not wait), St, should decrease in θt. Similarly, more customers purchasing at the initial

price implies increased Q2
t (Yt). Defining Q2

t to be increasing in at least one element of Yt

and not decreasing in any, implies Ŷt increasing in St. The distribution of the conditional

random variable Ŷ is dependent on θ. Upon observation of the same sales, St, and increase

in θ would imply greater class-2 demand leading to a (stochastic) increase in Ŷ .

For more discussion on the various elements and assumptions of our model (aggregate

demand, waiting parameter, bumping, allocation of discounted unit, discount price, and

learning behaviors) please refer to Appendix A. In what follows we analyze the model; first

for the case of self-regulating learning, and then for smoothing.
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For the case of self-regulating learning we show that the standard methodologies for

establishing concavity, such as Topkis (1998) Section 3.9.2, Putterman (1994) Section 4.7.3,

or their recent extensions, e.g., Smith and McCardle (2002), are not applicable. In their

models the state of the system evolves monotonically in the previous state and decision.

That is, the components of the state vector either increase or decrease in the previous state

and decision. In our general model (3), state transitions are not monotonic, since St is

stochastically decreasing in θt, while θt is increasing in either θt−1 or xt−1, or both. We

therefore develop the necessary methodology and show concavity in Section 4.

In Section 5 we study the case with a smoothing learning function and show that in

general concavity does not hold, unless the speed of customer learning is “slow.” Then we

consider two simplifications to the general model and derive their solutions in closed form.

Section 6 presents a model with three customer classes.

4 Optimal Policy for Self-Regulating Learning

In this section we derive the conditions under which the revenue-to-go function is concave

when the learning function, h(·), is self-regulating. Concavity implies that the optimal

policy for the firm places some units on sale in each period, relying on the consumer behavior

regulating the number of customers waiting.

We organize this section as follows. First in Section 4.1 we show that Jt(θt, St, xt) is con-

cave, supermodular and increasing under that assumption that these properties hold for the

single-period expected revenue function, r(θ, S, x). Then in Section 4.2 we discuss the prop-

erties of the revenue function g(S, x, ŷ), given in (1) that ensure concavity, supermodularity

and monotonicity of r(θ, S, x). We conclude by presenting an example.

4.1 Concavity in Dynamic Programs With Nonmonotonic State

Transitions

Observe from (3a) that since θt+1 = ht(θt, xt) is independent of St, the expected fu-

ture revenue, ESt+1|θt+1

[
J∗
t+1(θt+1, St+1)

]
, does not depend on St and therefore, letting

ϕt+1(ht(θt, xt)) = ESt+1|θt+1

[
J∗
t+1(θt+1, St+1)

]
we can substitute

Jt(θt, St, xt) = rt(θt, St, xt) + δϕt+1(ht(θt, xt)) (4)
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where the function ϕt+1 can be interpreted as the expected future revenue.

We make the following four assumptions which we show hold in the next section. We

assume that rt(θt, St, xt) is (A1) jointly concave in (θt, xt), (A2) supermodular in (θt, St, xt),

(A3) increasing in St, and (A4) St is stochastically concave in θt (and recall that by as-

sumption (i) from Section 3 it is also stochastically decreasing in θt). We also make the

fundamental assumption of Section 4 (A5) ht(θt, xt) is linear self-regulating, i.e.,
∂h
∂x

∂h
∂θ

≤ 0,

∂2h
∂x2

= ∂2h
∂θ2

= ∂2h
∂x∂θ

= 0.

Concavity and supermodularity in (4) are related by the following Lemma (all proofs

are presented in Appendix B):

Lemma 1 If ϕ is concave in h, then J is concave in x and supermodular in (θ, S, x).

Therefore it is sufficient to show that ϕ is concave in h, which in our original notation

corresponds to ESt|θt [J
∗
t (θt, St)] being concave in θt. Let fSt (y; θt) be the density of St

given θt. Then ESt|θt [J
∗
t (θt, St)] =

∫
J∗
t (θt, y)fSt (y; θt) dy. Concavity of this integral is

established by the following Lemma, which extends Theorem 3.9.1 of Topkis (Theorem 7 in

the Appendix) to the case where the integrant depends on the parameter.

Lemma 2 Let a family of univariate random variables Xθ be stochastically decreasing and

concave in scalar parameter θ, with cdf FX (x; θ) twice differentiable in θ. Let v(θ, x) be

supermodular in (θ, x), increasing in x and twice differentiable and concave in θ. Then∫
v(θ, x)dFX(x; θ) is concave in θ.

As a simple example of a distribution family that satisfies the conditions of the above

Lemma consider Uniform[0, a − bθ] for a, b ≥ 0, a − bθ > 0. Please refer to Shaked and

Shantikumar (1994) for further discussion of how to construct random variables with the

necessary properties.

Our main result in this section is given by the following Theorem.

Theorem 1 Under assumptions A1−A5, Jt(θt, St, xt) is concave in xt and supermodular

in (θt, St, xt) for all t = 1, 2, ...T.

Problem (3) defines a subclass of dynamic programs for which a vector of the system

state is not monotonic in the previous period’s state and decision. In this section we have

shown how to establish concavity for such dynamic programs. A similar logic with a different

set of initial assumptions could be used to prove other properties, for example, convexity.
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We also note that to our knowledge there is no published research dealing with concavity

(convexity) in the dynamic programs with nonmonotonic transitions. As such this is a

technical contribution of our paper.

Next we discuss the underlying conditions on the customer behavior which ensure con-

cavity.

4.2 Sufficient Conditions for Concavity of Jt(θt, St, xt)

In this section we study the properties of B(S, x, Ŷ ) and the other parameters of the model

that ensure that the expected single-period revenue function r(θ, S, x) is concave, super-

modular, and increasing, so that by Theorem 1 the revenue-to-go, Jt(θt, St, xt), is concave

for every period. Since the discussion relates to a single period, time indices are omitted.

B(S, x, Ŷ ) determines the number of class-2 “shoppers” who remain waiting once all

discounted units are sold. That is, B is the initial number of class-2 shoppers, Q2(ŷ) − S,

minus those who bought at a discount, where the latter reflects allocation of discounted

units. Therefore B should satisfy the following intuitive conditions: B1: B is increasing in

Ŷ and decreasing in S and x; B2: ∂B/∂x ≥ −1; B3: ∂B/∂S ≥ −1; B4: if x ≥ D(y)− S

then B(S, x, y) = 0; and B5: B(S, x, y) is piecewise concave in x on [0, D(y) − S) and

[D(y)− S,N ].

The increasing/decreasing properties of (B1) follow directly from the definition. Con-

ditions (B2) and (B3) hold because the discounted units are allocated between class-1 and

-2 customers: if additional ∆ discounted units are available, some of them will be sold

to class-1 customers, and so the number of class-2 customers remaining can decrease by at

most ∆, and similarly, if additional ∆ class-2 customers purchased early, then the chances of

waiting class-2 customers to obtain discounted units decrease (because the number of class-1

customers does not change), thus the number of unserved class-2 customers decreases by at

most ∆. (B4) implies if sufficient capacity is available to accommodate all customers, then

no customers remain. Finally, (B5) implies the rate of decrease in the number of unsatisfied

customers (weakly) increases with the number of discounted units, e.g., as would be the

case if units are allocated randomly. In addition to assumption (ii) that Ŷ is stochastically

increasing, we also assume that Ŷ is stochastically concave in S and θ, and stochastically

supermodular in (θ, S). These additional assumptions hold until the end of this section. We

have the following Lemmas:
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Lemma 3 r(θ, S, x) is increasing in S and concave in θ.

Lemma 4 r(θ, S, x) is concave in x if D(ŷ) > N for all Ŷ or if ∂B
∂x

≥ −p1/p2.

Lemma 4 implies that if there is always sufficient demand to fill the capacity the revenue

function is concave. Otherwise, the assumption ∂B/∂x ≥ −p1/p2 implies that for a ∆

increase in x, at most p1/p2×100% is allocated to class-2 customers and (1−p1/p2)×100%

goes to class-1. For example, if discounted inventory is allocated in proportion to demand,

the ratio of class-1 to class-2 customers should be greater than (p2 − p1)/p2. If demand is

low and ∂B/∂x < −p1/p2, then for each additional unit of x, the additional sales at the

lower price cannibalize too much of the revenue from the waiting class-2 customers. In this

case, offering no discounts is optimal, though concavity in the expected revenue cannot be

assured. We note that concavity of r(θ, S, x) in x could hold in this case if the distribution

of Ŷ places sufficiently small probability on Y′ =
[
ŷ|D(ŷ) ≤ N, ∂B

∂x
≤ −p1/p2

]
.

The optimal number of units on sale in the single period can be determined by solving

the first-order condition ∂r(θ, S, x)/∂x = 0, and is given by the following corollary:

Corollary 1 The single-period optimal number of units on the end-of-period sale, x∗, sat-

isfies

p1Prob(D(Ŷ ) > S + x∗)+p2

∫
Y\yL

∂B(S, x, y)

∂x
dFŶ (y) (5)

= pC

(
Prob(B(S, x∗, Ŷ ) > N − S − x∗) +

∫
yH

∂B(S, x, y)

∂x
dFŶ (y)

)
where yL(S, x) = {y : D(y) ≤ S + x} and yH(S, x) = {y : B(S, x, y) > N − S − x} are

the sets of demand outcomes where all demand is either accommodated prior to any last

minute price increase (yL) or the unsatisfied class-2 demand exceeds the remaining capacity

and thus some customers will be bumped (yH).

Recalling ∂B/∂x < 0, the first-order condition implies x should be chosen to balance

the marginal additional revenue gained from bargain-hunters (class-1) less the marginal

diverted revenue from class-2 customers who purchase at p1 with the marginal penalty costs

less the penalty costs saved by serving additional class-2 customers. That is, (5) expresses

the newsvendor-like balance:

p1Prob((S + x∗)thunit is sold at p1)− p2Exp[Marginal decrease in # of diverted customers] =

pC(Prob(Bumping a customer) - Exp[Marginal decrease in # of bumped customers]).
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Joint concavity and supermodularity of r(θ, S, x) are discussed in the following Lemma:

Lemma 5 r(θ, S, x) is supermodular in (θ, S, x) and jointly concave in (θ, x) if either (i)

D(ŷ) > N for all ŷ in the support of Ŷ and ∂B
∂x

= const (∂B
∂x

= −1 if pC > 0); or (ii)

D(ŷ) ≤ N for all ŷ in the support of Ŷ , and ∂B
∂x

= −p1/p2.

Summarizing, we have the following theorem:

Theorem 2 The revenue-to-go function is concave in xt under conditions (B1) – (B5) if

either (i) total demand always exceeds capacity and the marginal discounted unit is allocated

between customers classes in a constant proportion (the marginal unit is sold to a class-2

customer if the penalty cost is positive); or (ii) total demand is always less than capacity and

the marginal discounted unit is allocated between the classes in proportion to their revenues.

As an example of a function that satisfies the assumptions, suppose that demands from

class-1 and -2 customers are given by multiplying nominal demands, d1 and d2 by a random

variable, Y . Demand at price p2 is yd2 and at price p1 is y(d1 + d2). Let y be the minimum

value of the support of Y . For the case with pC = 0 and y(d1 + d2) ≥ N , consider

B(S, x, ŷ) ≡ ŷd2 − S − x d2
d1+d2

. Here, the number of remaining class-2 customers reflects

the total number of class-2 customers that wait, M = ŷd2 − S, net the number of class-

2 customers that purchased product at the end-of-period sale. Further, the discounted

units are allocated on proportion, which is constant and depends on the nominal demands,

d2/(d1 + d2). With this, g(S, x, ŷ) = ŷp2d2 + x
(
p1 − p2

d2
d1+d2

)
, which is supermodular in

(S, x, ŷ), and linear in (x, ŷ). Therefore the conditions of Theorem 2 hold and the expected

revenue-to-go function is concave for every period, and so the optimal number of units on

sale is easy to find.

Our results also suggest a neat interpretation of the optimal policy for the case with self-

regulating learning. First, concavity implies that the firm places some units on sale in every

period. Furthermore, since the revenue function is supermodular, the number of units on

sale increases in the waiting parameter. But, the self-regulating learning behavior controls

the number of customers waiting in the subsequent period so that it does not continue

to increase. The firm takes a passive role, placing some units on sale, and relying on the

consumer behavior to control future waiting. This is not the case for smoothing learning

functions, where the firm must actively manage consumer waiting as we discuss below.
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5 Optimal Policy for Smoothing Learning Function

In this section we assume that the learning function ht(θt, xt) is smoothing; that is, the

next period’s waiting parameter, θt+1, increases in both the current waiting parameter, θt,

and the number of units on sale in period t, xt. We show that in the general model the

revenue-to-go function is not necessarily concave, unless the speed of consumer learning

is “slow” as defined below. To address the problems with arbitrary speed of learning we

present two simplified models and show that for either simplification, the optimal policy

has a “bang-bang” structure where the firm alternately places a number, x̂t, or zero units

on sale. We describe this optimal policy in the closed form.

Under the assumption that the learning function is linear, concavity and supermodularity

of the revenue-to-go require, respectively:

∂2

∂x2
J(θ, S, x) =

∂2

∂x2
r(θ, S, x) + δ

∂2ϕ

∂h2

(
∂h

∂x

)2

≤ 0 and (6)

∂2

∂x∂θ
J(θ, S, x) =

∂2

∂x∂θ
r(θ, S, x) + δ

∂2ϕ

∂h2
∂h

∂x

∂h

∂θ
≥ 0. (7)

Because smoothing learning implies ∂h
∂x

∂h
∂θ

≥ 0, for (6) and (7) to hold when r is concave and

supermodular, we must place some restrictions on the curvature of ϕ(h(θ, x)).† Specifically,

observe that ∂h/∂x reflects the speed at which customers learn about the firm’s decisions.

If r is concave, then from (6) if ∂h/∂x is small enough then J would be also concave.

Slow learning has been documented in the works on reference price learning with respect

to the sales promotions. Greenleaf (1995) and Hardie et al. (1993) studied point-of-sales

data for such commodities as peanut butter and refrigerated orange juice, and reported

an analog of our ∂h/∂x to be at 0.075 and 0.17 respectively. However, we know of no

research regarding the speed of learning for discounts in services. This is of interest for

future research.

The speed of learning also plays an important role in Gallego et al. (2008) and Liu and

van Ryzin (2009). Specifically, in the former, numerical simulations suggest that in the case

of slow learning, the firm should offer a constant number of units on sale, and otherwise the

number should be raised and lowered in alternate periods. Next we prove a similar result

analytically and provide a closed form expression for the number of units on sale.

†Remark: This was not necessary in the case with self-regulating learning because in that case ∂h
∂x

∂h
∂θ ≤ 0

and so when r and ϕ are concave, concavity and supermodularity of J also follow.
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5.1 Simplified Models

In this section we simplify the general model so that upon observing the initial sales, the

firm can infer the exact number of customers waiting for period t. The future demand and

purchasing behavior remain stochastic. This simplification allows us to solve the problem

in the closed form while utilizing a less constrained B(S, x, y) and relaxing the linearity

assumption of the learning function.

For the remainder of the paper, let Y ∈ [y, y] be a random variable and let demand

from each class reflect a nominal demand, di, i = 1, 2 multiplied by Y . For class-2, demand

is d2Yt and for class-1, demand is d1(a + bYt), where a, b are given constants. Observe

that with b > 0 class-1 and -2 demands are positively correlated, with b < 0 then are

negatively correlated and for a > 0, b = 0 class-1 demand is a constant. Note that in

the two former cases demands are perfectly correlated. An extension to the non-perfectly

correlated demands in presented in Appendix C. With these, the total demand from both

classes is Dt(Yt) = Ytd2 + (a+ bYt)d1. We assume yd2 ≤ N and d2 + bd1 ≥ 0 to ensure that

D is increasing in Y .

Let αt ∈ [α, α] ⊆ [0, 1] be the fraction of the class-2 demand that waits for the end-of-

period sale in period t. We refer to αt as the waiting fraction. Observe that Mt = αtYtd2

and St = (1− αt)Ytd2.

In this section we consider two simplifications:

(i) Deterministic waiting fraction model, in which the demand multiplier, Yt, is stochas-

tic, but its distribution does not depend on the waiting parameter; the waiting fraction

is deterministic with αt ≡ θt, and evolves according to a smoothing concave learning

function αt+1 = ht(αt, xt);

(ii) Deterministic demand model, in which Yt ≡ Constant for all t = 1, 2, ...T and

w.l.o.g. we set Yt ≡ 1; the random waiting fraction, αt, is stochastically increasing

and concave in the waiting parameter θt, which evolves according to a smoothing

concave learning function θt+1 = ht(θt, xt).

Let At(αt, Yt) be the actual demand for the discounted seats. At(αt, Yt) = Dt(Yt)−St =

ad1+Yt(d2+bd1)−St. Since the firm puts xt units on the end-of-period sale, min[xt, At] units

are sold at the discounted price p1. Assuming that the discounted inventory is allocated

proportionally between class-1 and class-2 customers based on their realized demands, the
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number of class-2 customers that purchase discounted units is min[xt, At]
αtYtd2
At

. The number

of unserved class-2 customers after the sale is

Bt(αt, Yt, xt) = αtYtd2

(
1− min[xt, At]

At

)
. (8)

and from (1) the net single-period revenue is

gt(αt, Yt, xt) = p2St + p1min[xt, At] + p2αtYtd2

(
1− min[xt, At]

At

)
− pC

(
αtYtd2

(
1− min[xt, At]

At

)
− (N − St − xt)

)+

(9)

Observe that for either simplified model by knowing θt and observing St the firm can

determine the exact (realized) values for αt and yt, and therefore at the sale time there is

no uncertainty for the current period. If At + St = D(yt) < N , then the firm has excess

capacity and bumping cannot occur. Otherwise the capacity is scarce, and bumping can

occur if too many units are put on sale.

Since the firm knows which case realizes with certainty, it forces an intuitive restriction

pC ≥ p1. Otherwise firms could intentionally sell discounted products and later bump

class-1 customers (as overflow) for a premium of p1 − pC > 0.

5.2 Single-Period Solution for the Simplified Models

Let x̂(α, y) be the maximum number of discounted units such that: (i) all class-2 customers

are allocated a product without bumping others; and (ii) all x̂(α, y) units are sold. In

the case of excess capacity the firm cannot sell all available inventory, and so x̂(α, y) =

A(α, y). For the scarce capacity case, solving αyd2

(
1− x

A(α,y)

)
= (N − S − x) yields

x̂ = A(α, y) N−S−αyd2
A(α,y)−αyd2 < A(α, y). Observe x̂ ≤ N − S. In summary,

x̂(α, y) =

 A(α, y), if A ≤ N − S (excess capacity case);

A(α, y) N−S−αyd2
A(α,y)−αyd2 , if A > N − S (scarce capacity case).

(10)

Theorem 3 For a single period problem, in either simplified model, there exists a threshold

α∗, such that if α ≥ α∗ then x∗ = 0. Otherwise, in the case of scarce capacity, x∗ = x̂(α, y),

and in the case of excess capacity any x ∈ [x̂(α, y), N − S] is optimal.

We note that α∗ ≤ 1 if Dt(Yt)p1 ≤ Ytd2p2. That is, α∗ ≤ 1 if the potential revenue at

price p2 exceeds the potential revenue at p1. In this case, the single-period optimal policy
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is “bang-bang”: the optimal number of discounted units drops down to zero if too many

customers wait (i.e., when α ≥ α∗); and it jumps up to x̂ otherwise. In the opposite case,

if α∗ > 1 then α is always smaller than α∗ and some number of units are always placed on

a discount. Next we prove that a similar “bang-bang” policy holds for every period.

5.3 Multiple-Period Solution for Simplified Models

Let Rt(θt, αt, yt, xt) be the expected revenue-to-go, given that for period t, the waiting

parameter is θt, the realized waiting fraction is αt, the observed demand multiplier is yt and

xt units are put on sale. The optimal number of discounted units, x∗t , can be found for each

period, t = 1, 2, ...T , by solving the following dynamic program:

Rt(θt, αt, yt, xt) = gt(αt, yt, xt) + δE(αt+1,yt+1)|θt+1=ht(θt,xt)

[
R∗
t+1(θt+1, αt+1, yt+1)

]
(11)

where the optimal revenue-to-go is given by

R∗
t (θt, αt, yt) = max

0≤xt≤N−(1−αt)ytd2
Rt(θt, αt, yt, xt) (12)

where gt(αt, yt, xt) is given by (9); R∗
T+1(θT+1, αT+1, yT+1) = 0 for all (θT+1, αT+1, yT+1); and

θt+1 = ht(θt, xt), is increasing and concave in either argument. Because θt+1 = ht(θt, xt) does

not depend on the realized values of αt and yt, we can write Rt(θt, αt, yt, xt) = gt(αt, yt, xt)+

δϕt+1(ht(θt, xt)). In our two simplified models ϕt+1 takes the following specific forms:

• In the deterministic waiting fraction (DW) model, αt ≡ θt for all t by assumption and

the distribution of Yt is independent of αt. Therefore

ϕDWt+1 (ht(αt, xt)) = Eyt+1

[
R∗
t+1(ht(αt, xt), yt+1)

]
(13)

• In the deterministic demand (DD) model, Yt ≡ 1 for all t by assumption, and so

w.l.o.g. y can be dropped from the expectation of the future revenue, leading to

ϕDDt+1(ht(θt, xt)) = E(θt+1,αt+1)|θt+1=ht(θt,xt)

[
R∗
t+1(θt+1, αt+1)

]
(14)

Let Πt = {xt : Rt(θt, αt, yt, xt) = R∗
t (θt, αt, yt) and 0 ≤ xt ≤ N − St} be the set of

“potentially optimal” solutions for period t. Our main result for the simplified models is

that Πt = {0; x̂t} for all t = 1, 2, ...T . The concept of our proof is the following. Suppose that

the expected future revenue, ϕt+1, is decreasing and convex in xt and αt. Since gt(αt, xt, yt)

is piecewise linear in x, Rt consists of two adjacent and convex segments. Since g is also
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decreasing for xt > x̂t, Rt is also decreasing if xt > x̂t. Therefore x∗t ∈ {0; x̂t} ≡ Πt. We

summarize this result in the theorem below.

Theorem 4 In either simplified model, x∗t ∈ Πt = {0; x̂t} for all periods t = 1, 2, ...T .

To summarize, for the case with a smoothing learning function for both simplified models,

the optimal policy is “bang-bang”; it places either 0 or x̂t units on the end-of-period sale

depending on the realized waiting fraction, αt. The firm increases the number of “shoppers”

by offering units on sale, and then withdraws revenue from those shoppers by periodically

not offering any discounted units, subsequently decreasing the likelihood of future waiting.

By following such policy the firm simultaneously achieves high utilization of its capacity

and controls the number of customers waiting. This policy is quite different from that of the

self-regulating case, because the firm actively manages the waiting, as opposed to relying on

the consumers to regulate the waiting themselves. Observe that since x̂t ≤ N −St bumping

is never optimal. This is because the marginal revenue p2 per unit could as well be obtained

from the initial sales, and since the future revenue is decreasing in xt, the firm puts fewer

units on sale and reduces the future waiting. This is not the case if the firm can obtain a

marginal revenue in excess of p2, as happens in the three price model that we study next.

6 Three Price Model

Next we study the case where a firm may choose to offer some units for sale at p1, while

raising the price to a higher value for the remaining inventory. By doing so the firm can

both capture the low-price demand, as well as the demand willing to pay extra for being

accommodated after all discounted units are already sold. The three-price model reflects

frequently observed situations where the “walk-up” price is higher than the regular, while

some units have been sold at a discount earlier.

Let p3 ≥ p2 be the “high” price. We build up on the simplified model of Section 5.1

amended as follows. We assume only class-3 customers are willing to purchase at price p3

and let their demand in period t be Ytd3 ≡ YtD3. The number of customers who are willing

to pay price p2 is now YtD2 where D2 = d2 + d3. Also let D1 = d1 + d2 + d3. We assume

ȳD2 < N as before. At the sale time the firm decides xt, the number of units to offer at the

discounted price p1. The remaining units are offered at price p3.
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To determine the revenue of the firm, St ≡ (1−αt)YtD2 units are sold at the initial price

p2, and min[xt, At] units are sold at the discounted price p1, where At ≡ (a+bYt)d1+αtYtD2.

Let ψt(αt) ∈ [0, 1] be the fraction of class-3 customers who wait for a discount, given that

there is a fraction αt ∈ [α;α] of class-2 and -3 customers waiting combined. That is, the total

number of class-3 customers waiting is ψt(αt)Ytd3, and the number of class-2 customers is

αYtD2 − ψt(αt)Ytd3. Since the latter is non-negative, it is implied that ψt(αt)Ytd3 ≤ αYtD2

for all αt ∈ [α;α].

As before, we assume that the discounted units are allocated on proportion. That is, the

number of discounted units that are sold to class-3 customers is min[xt, At]
ψt(αt)YtD3

At
and

the net single-period revenue is

gt(αt, Yt, xt) = p2St + p1 min[xt, At] + p3ψt(αt)Ytd3

(
1− min[xt, At]

At

)
− pC

(
ψt(αt)Ytd3

(
1− min[xt, At]

At

)
− (N − St − xt)

)+

,

where p1 ≤ pC ≤ p3.

In this section we assume that the demand multiplier, Yt, is stochastic, and the waiting

fraction, αt, is deterministic.‡ We assume that the distribution of Yt does not depend on αt,

and that in turn, αt evolves according to a linear learning function αt+1 = ht(αt, xt). We

place no restriction whether h(·) is smoothing or self-regulating.

In order to proceed we need to further specify the properties of ψ(α). Consider the

case where it is the firm’s policy not to oversell capacity and subsequently lose unsatisfied

customer demand (the “no-bumping” case). Because class-3 customers have a higher valu-

ation for the product, they are less willing to wait and risk not receiving a unit. Therefore

we assume ψ is “small,” compared with α, and class-3 customers do not wait unless many

class-2 customers are already waiting. For example, if we assume that class-3 customers do

not wait, unless all class-2 customers are already waiting, then ψ(α) = max[0, 1− D2

d3
+αD2

d3
]

for α ∈ [0, 1].

In the case where the firm is willing to bump passengers (the “bumping” case), class-3

customers who waited but did not get a discounted unit do not have capacity concerns,

as they are guaranteed a product at their reservation price, p3 (since ytd3 ≤ yD2 ≤ N).

‡Alternative models with stochastic demand and waiting, or deterministic Y and stochastic α, could

in general be of interest as well. However, we found that in three price context they place restrictive and

uninterpretable conditions on prices, demands and waiting. Therefore we do not present them.
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Therefore, they are more likely to wait, and we assume ψ is “large”; there may be a fraction

of class-3 customers waiting even if no class-2 customers wait. For example if ψ(α) =

d1
D1

+αD2

D1
for α ∈ [D3(D1−D2)

D2(D1−D3)
, 1], the fraction of class-3 customers that always wait is ψ(α) =

d1/(d1 + d2).

We assume that ψ is nondecreasing convex. In the no-bumping case ψ = 0 for α ≤ α̂

for some α̂ ∈ [α, d2/D2] and ψ
′D3 = D2, otherwise. In the bumping case, ψ′D3 ≤ D2 and

ψ′A(α, y) ≤ ψyD2. Functions that satisfy these assumptions correspond to the “small” and

“large” ψ as per the discussion above.

We redefine x̂ to include the waiting of class-3 customers as follows:

x̂(α, y) =

 A(α, y), if A ≤ N − S (excess capacity case);

A(α, y) N−S−ψ(α)yD3

A(α,y)−ψ(α)yD3
, if A > N − S (scarce capacity case).

(15)

By the same argument as in the proof of Theorem 3 we obtain that the single-period optimal

policy resembles that of the two-price model.

Theorem 5 In the three price model there exists a threshold α∗, such that if α ≤ α∗, then

x∗ = x̂(α, y) in the case of scarce capacity , and any x ∈ [x̂(α, y), N − S] is optimal in the

case of excess capacity. Otherwise, x∗ = 0.

In this case, α∗ ≤ 1 if Dt(Yt)p1 ≤ YtD3p3. That is, if the revenue from the high-price

segment exceeds the revenue from all segments at the low-price, then the single-period

optimal policy is “bang-bang.” For multiple periods the result extends as follows:

Theorem 6 In the three-price model with bumping, x∗t ∈ {0; x̂t;N−St}, and without bump-

ing x∗t ∈ {0; x̂t} for all periods t = 1, 2, ...T .

In sum, the optimal policy follows a pattern similar to that of the two-class model:

increasing the fraction of customers waiting by offering units on sale followed by periods

where no units are discounted. By doing so, the firm can withdraw revenue from waiting

class-3 customers while decreasing future waiting. There is, however, a major difference

between the two- and three- price models. In the former, even if the firm’s policy was to

bump customers if overflow occurs, doing so was never optimal. In contrast, in the latter,

the optimal solution could involve selling all of the available N − S units at p1, bumping

some customers and paying penalty pC < p3. By doing so the firm can encourage more

class-3 customers to wait, and potentially get revenue p3 in excess of the regular price p2

per unit, even though it may result in paying bumping penalties.
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7 Numerical Studies

In this section we provide several examples to illustrate the value of making decisions opti-

mally as compared with several heuristics managers use in real-life situations, and examine

how this value and the optimal policy itself change in different situations. We also analyze

how to select the optimal discount price p∗1. We use the three price model since it allows

for all types of consumer behavior that we study in our paper. We consider the case with

positively correlated demands (i.e., with a = 0, b = 1 leading to the class-1 demand of Ytd1).

We set N = 100, δ = 0.95, D2 = 50, p1 = 100, p2 = 300 and p3 = 500, and consider

four families of instances: smoothing bumping (MB), smoothing no-bumping (MN), self-

regulating bumping (RB) and self-regulating no-bumping (RN). For each family of instances

we study four demand curves, withD1 = 150 orD1 = 100, andD3 = 30 orD3 = 10 for class-

3 customers. We denote these demand curves as “150-50-30,” “150-50-10,” “100-50-30,” and

“100-50-10,” respectively. For cases with bumping we study two penalties: pC = 150 and

pC = 450.

We use functions h(α, x) = λ x
N

+ (1 − λ)α and h(α, x) = (1 − λ) + λ x
N

− (1 − λ)α,

for 0 < λ < 1 for the smoothing and self-regulating learning, respectively. We use ψ(α) =

d1
D1

+αD2

D1
and ψ(α) = max[0; 1− D2

D3
+αD2

D3
] for waiting functions with and without bumping,

respectively.

We set y = 0.6 and y = 1.4, so that the demand multiplier Yt ∈ [0.6, 1.4], and examine

three distributions: truncated Normal[1, 0.2]§, Beta[1.75, 3] and Beta[0.8, 2], with the ex-

pected values and CV s, respectively, (1, 0.913, 0.841) and (0.181, 0.191, 0.237). The results

are very similar and below we report only the case with Beta(0.8;2).

For each instance we compute the expected infinite horizon discounted revenue (the

revenue), assuming that the system starts from steady state − intuitively, this is the revenue

that the firm will generate starting at an arbitrary time in the future. To compute the

revenue we discretize αt as {0; 0.01; 0.02; ...1} and discretize yt as {0.6; 0.7; ...1.4} for a

total of 909 states. We use successive approximations with error bounds to compute the

infinite horizon expected revenue function value (Bertsekas (1987), pp. 188-193). Then we

determine the subset of recurrent states and the steady state probabilities, and obtain the

expected revenue as the weighted sum (Puterman 1994, pp.589-594).

In Figure 2 (a) we present a sample path for the optimal decision, x∗, and the fraction

§We use 2σ limits so that the endpoints have non-negligible probabilities.
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Figure 2: In (a): sample path of the optimal decision, x∗
t , and the fraction of customers waiting, αt. In

(b): frequencies of visiting different states by the optimal policy. Both examples are for the MN instance

with 150-50-30 demand curve and Beta(0.8,2) demand multipliers; λ = 0.2.

of customers waiting, αt, and in (b) we present the recurrent states and the frequencies

with which they are visited in the steady state. We observe that the optimal decision and

the fraction of customers waiting follow the cycles of variable length. This expresses the

“bang-bang” structure of the optimal policy: if in period t the fraction of waiting customers,

αt, gets large enough, then the firm puts x∗t = 0 units on sale and so αt+1 drops. Hence in

period t+ 1 the firm puts x̂(αt+1, yt+1) > 0 units on sale and αt+2 increases again; note the

1-period time lag between x and α in (a). Following such cycles, the optimal policy visits

a variety of states; see (b). Because of the uncertainty in demand, the length of cycles is

random. Thus, the customers cannot anticipate the transitions and hence the decision of

the firm.

7.1 Performance of the Optimal Policy and Managerial Insights

To better understand the performance of the optimal policy we compare it with four heuris-

tics that appeal to managers. In each heuristic we determine the number of units to put on

sale through different methods. We consider the following:

Do-nothing: Let xt = N − St or xt = 0 for all t, whichever is better;

BestP: Let xt = N − St with probability P ∗ and xt = 0 with probability 1 − P ∗, where

the value of P ∗ is the one that results in the highest revenue;

23



S*: Let xt = N − S if St ≤ S∗ and xt = 0, otherwise, where the value of S∗ is the one that

results in the highest revenue;

Beta*: Let xt = N − St with probability β∗N−St

N
, and xt = 0 with probability 1− β∗N−St

N
,

where the value of β∗ is the one that results in the highest revenue.

The rationale behind the do-nothing heuristic is straightforward: choose the better of

“all” or “none” on sale ad do so consistently in all periods. The BestP heuristic attempts

to prevent consumers from guessing if a sale will occur in a given period.¶ Heuristics S*

and Beta* represent a näıve managerial approach where discounts are offered in periods

with low regular price sales (i.e., when St is small). The former heuristic does so when a

threshold is crossed, whereas the latter places units on sale based on a linear probabilistic

rule. We find P ∗, S∗ and β∗ through numerical search. Given the revenues of the optimal

and heuristic policies, we compute the relative improvement of the optimal policy over a

particular heuristic as (optimal revenue − heuristic revenue)÷(heuristic revenue).

Figure 3 presents the relative improvements over the heuristics for the four families of

instances with 150-50-30 demand curve and Beta(0.8;2) demand multipliers. Our main

observation is that in all cases the optimal policy generates five to fifteen percent additional

revenue over the best heuristic. This value changes depending on the speed of learning and

the type of consumer behavior. It also depends on which heuristic is the best.

In the cases without bumping, (Figure 3 (a) and (c)), the best heuristic is BestP, as it

outperforms heuristics S* and Beta*. At a first glance this might seem slightly counterintu-

itive, since the latter are based on the intuitive managerial approach to put more units on

sale when St is small. However, recall that the optimal policy suggest exactly the opposite

to this näıve approach. Specifically, x∗t = 0 if αt > α∗, and since St = (1−αt)ytD2, it follows

that (in expectation) it is optimal not to put units on sale in the periods with small St.

The improvement over the BestP heuristic depends on the speed of learning. This is

because the optimal policy determines when to offer a discount (the timing), and if one is

offered, then how many units to discount (the number). By choosing the best probability,

the BestP heuristic “optimizes” the long-run average number of units on sale, but cannot

¶A variation of the BestP heuristic is used by a car rental company with whom we discussed our work:

they have a deal almost every week, but to access it, customers need a promotion code. These codes are

e-mailed to a subset of their registered webmail customers, where a customer is included on the mailing list

for a given week with some probability.
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Figure 3: The relative improvements for the (a) MN , (b) MB, (c) RN and (d) RB instances with 150-50-30

demand curve and Beta(0.8,2) demand multipliers. In (b) pC = 150 and in (d) pC = 450.

achieve the right timing of sales. In the cases of slow learning in order to change waiting

behavior, the firm must have consistent series of periods with and without discounts. The

BestP heuristic cannot ensure such consistency, and therefore chooses to do nothing (indeed

P ∗ = 0 for λ < 0.625 on Figure 3 (a) and for λ < 0.575 on Figure 3 (c)). For faster speeds

of learning, consistency is not required as customers readily change their waiting behavior;

therefore the timing of sales is less important than the average number of units on sale.

In the instances with bumping (Figure 3 (b) and (d)), the best heuristic is S*. This

is because even though all heuristics bump customers in the situations where the optimal

policy does not, S* bumps the least. As discussed above, the S* heuristic has a direct

control over the timing, as opposed to the probabilistic heuristics which do not. Better

timing implies less frequent bumping and consequently lower (total) bumping penalty, so

the S* heuristic returns higher revenue in the cases with bumping than other heuristics.

Also, because the total penalty is proportional to pC , the improvement is naturally larger
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Instances where discounts Instances where discounts

improve revenue do no improve revenue

MB, RB 150-50-10 MN, RN 150-50-10

MB, RB 100-50-10 MN, RN 100-50-10

MN, RN 100-50-30 MB, RB 100-50-30

MN, MB, RN, RB 150-50-30

Table 1: Comparison of cases where end-of-period discounts are beneficial.

in the cases with large pC : compare (b) and (d) in Figure 3.

Next we study the factors that influence whether strategic revenue management as we

discuss in this paper will be effective. Table 1 classifies different instances into those where

the firm benefits from offering end-of-period discounts and those where it does not. In the

cases with few class-3 customers (rows 1 and 2 in Table 1) observe that discounts increase

revenue only in the cases with bumping. This is because if the firm bumps customers to

accommodate class-3 overflow, then it provides an incentive for more class-3 customers to

wait (through the ψ(α) function). But because there are few class-3 customers overall,

the number of waiting class-3 customers is still small compared to the number of class-1

customers. As a result, only a few class-3 customers who wait are able to buy at a discount,

while most buy at p3, hence increasing firm’s revenue. In contrast, when there are many

class-3 customers and few class-1 customers (row 3), the threat imposed by refusing to bump

customers forces fewer high-value class-3 customers to wait (through ψ(α)), allowing the

firm to sell much of its capacity early at price p2 and gain revenue by offering discounts that

are mostly purchased by class-1 customers. Without the threat (i.e., with bumping) the

reaction function ψ(α) changes and too many class-3 customers wait and purchase discount

seats, instead of purchasing them early at price p2. Thus, given a choice, depending on the

relative class-1 and class-3 demand, the firm may or may not prefer to oversell its capacity

and bump passengers. That is, the firm can use bumping strategically to induce appropriate

customer behavior and enhance the effectiveness of its revenue management policy.

7.2 Selecting the Optimal Discount Price, p∗1

Our model assumes that the discount price, p1, is fixed for the entire horizon of T periods,

and as we argue in the introduction, building a model where customers react to both price

and availability of discounted units is nontrivial. As research in dynamic pricing shows,

however, a heuristic that charges an optimally selected single price (as opposed to optimizing
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multipliers.

it dynamically) often performs only marginally suboptimally. Therefore, as a heuristic

policy, the firm could search for the optimal “static” discounted price, p∗1, charge it in every

period, and then determine the number of discounted units to put on sale following our

optimal policy.

We search for such optimal static price, p∗1, numerically over its domain, [0, p2]; see Figure

4. In this example, we impose a demand curve D(p) = 200 − 0.5p (so that D(300) = 50

and D(100) = 150 as in previous examples). We also assume that the value of a discount

influences the rate at which customers are willing to change their behavior, i.e., the speed

of learning. In particular we assume λ(p) = 0.3 − 0.001p. We experimented with other

functions for demand and speed of learning, but observed no qualitative differences from

the case presented, see Figure 4.

Two observations are evident from Figure 4. First, the revenue is not concave and often

not quasiconcave in the price, therefore it may not be possible to determine the optimal

discount analytically. There is an obvious optimal point, however. Such a point exists

because the firm uses class-1 demand to achieve two goals. On one hand it wants p1 to be

high, since then it obtains larger revenue from the sale of each discounted unit. On the other

hand, it wants D(p1) to be high, because under proportional allocation class-1 customers

displace some waiting class-3 customers, so that they purchase at the higher price, p3. Since

price negatively affects demand, these goals conflict and an optimal trade-off point is found.

Figure 4 also provides a neat illustration to the earlier point that firms can strategically

use bumping to increase revenue. Observe that when the discounted price is small, hence,

class-1 demand is high, more revenue is obtained when the firm bumps passengers (RB
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and MB curves are higher than RN and MN). Conversely, when the price is large, class-1

demand is small, and the firm benefits from not bumping (RN and MN curves are higher).

8 Conclusions

Our work is motivated by the concern that given the increased ability to search for better

prices for travel related products (flights, vacation packages, etc.), consumers will learn to

expect end-of-period deals and will strategically wait for them. We study the problem for

cases of two and three customer classes. The two-class problem represents the case where a

list price is given (as in the cruise or vacation packages industries); the three-class problem

reflects typical airline pricing where prices may decrease or increase in the days prior to

departure. We formulate the problem as a dynamic program and develop a unique solution

approach amenable to the novel structural properties we find in the problem.

For the case of two customer classes with self-regulating customer behavior, we show that

the firm in general will set some units on sale in each period and allow the customer behavior

to limit the number receiving the benefit of the reduced price inventory. In contrast, in the

case of smoothing customer behavior, we show the firm should follow a “bang-bang” sale

policy, either placing most of the remaining units on sale or none. Thus, the firm takes a

more active role, adjusting the customers’ expectations by alternately increasing the number

of customers waiting until a threshold is crossed, upon which the firm places no units on

sale. By doing so, the firm is able to regulate the number of customers waiting and to

increase its revenue by increasing utilization, allowing some units that would otherwise not

be sold to be purchased by the lower-value customers.

In the model with three customer classes, we consider how high-value customers react

to a firm’s bumping policy. In the cases with bumping, high-value customers have a higher

incentive to wait. As a result, in addition to the “bang-bang” policy, it could be optimal to

discount all units remaining and pay bumping penalty. Such policy, however, is beneficial

only if there are few high-value customers. Establishing a policy of not bumping passengers is

beneficial when there are many high-value customers. Overall, the benefit from following the

optimal policy is 5 to 15 percent more revenue as compared to several intuitive managerial

heuristics.

We acknowledge that the model formulated here does not account for all factors that
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may influence strategic customer behavior in revenue management. Future studies should

consider more explicit formulations of customer utility, competition between firms and gam-

ing by both firms and customers. In addition, empirical work is needed to better understand

consumer learning behavior with regards to travel-related discounts.

References

[1] Anderson, C. K., J. G. Wilson. 2006. Optimal Booking Limits in the Presence of

Strategic Consumer Behavior. Working paper.

[2] Asvanunt A., S. Kachani. 2007. Dynamic Pricing Policies in Presense of Strategic Con-

sumer Behavior. Working paper.

[3] Aviv, Y., A. Pazgal. 2008. Optimal Pricing of Seasonal Products in the Presence of

Forward-Looking Consumers. M&SOM. 10(3) 339-359.

[4] Bailey J. 2007. Bumped Fliers and No Pan B. New York Times. May 30, 2007.

[5] Bertsekas, D. P. 1987. Dynamic Programming. Prentice-Hall, New Jersey.

[6] Besanko, D., W. L. Winston. 1990. Optimal Price Skimming By a Monopolist Facing

Rational Consumers. Management Science 36(5) 555-567.

[7] Bitran, G. R., R. Caldentey. 2003. An Overwiev of Pricing Models for Revenue Man-

agement. M&SOM. 5(3) 203-229.

[8] Cachon G., R. Swinney. 2009. Purchasing, Pricing, and Quick Response in the Presense

of Strategic Consumers. Management Science Vol. 55, No. 3, pp. 497-511

[9] Chesson, H., W. K. Viscusi. 2000. The Heterogenetiy of Time-risk Tradeoffs. J. Beh.

Dec. Making. 13 251-258.

[10] Conlisk, J., E. Gerstner, J. Sobel. 1984. Cyclic Pricing by a Durable Goods Monopolist.

The Quarterly Journal Of Economics. 99(2) 489-505.

[11] Cooper, W. L., T. Homem-de-Mello, A. J. Kleywegt. 2006. Models of the Spiral-Down

Effect in Revenue Management. Operations Research. 54(5) 968-987

29



[12] Dana, J. D. Jr. 1999. Using Yield Management to Shift Demand When the Peak Time

is Unknown. The RAND J. of Eco. 30(3) 456-474.

[13] De Lisser, E. 2002. Cranky Consumer: Booking a Last-Minute Ticket. Wall Street

Journal. July 2, 2002. D2.
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Appendix A: Model Discussion

Aggregate Demand. We consider a model where rather than tracking the detailed arrival

dynamics of individual customers, the firm focuses on the aggregate behavior of customer

classes through the parameter θ. Our approach is motivated by many discussions with

revenue management executives who noted that in a multiple-period setting like ours, cus-

tomers who purchase products in different periods are typically different individuals, and

it is rather unclear how these individuals react to the firm’s revenue management policy

or even if they have accurate information about it at all. At the same time, the firm is

concerned with the aggregate outcome of these individual behaviors, and as these execu-

tives noted, there exists information sources such as industry reports, news articles, and

web sites, through which aggregate demand reacts to the revenue management policy of the

firm. Our model expresses such considerations.

In our general model we place no restrictions on how class-1 and -2 demands combine

in the total demand Dt, and allow the demands from different classes to be arbitrarily

positively or negatively correlated, or be independent. This is important because such

cases could realistically arise depending on the interpretation of demand parameter Yt. For

example, weather is likely to influence both classes in the same direction (resulting in a

positive correlation), but exchange rate could lead to a shift in market segments – some

discount only class-1 customers could become regular price class-2 customers if exchange

rate improves (resulting in a negative correlation). In our simplified models, Sections 5 and

6, we consider the case where the demand in class i reflects a nominal demand di and a

random multiplier. In class -2 (and -3) this nominal demand is multiplied by the demand

parameter Yt, and in class-1 the nominal demand is multiplied by a linear function of Yt,

a+bYt. Then the cases with b > 0 and b < 0 reflect positive and negative (although perfect,

up to a linear transformation) correlations, respectively. Appendix C presents an extension

of simplified models to the non-perfectly correlated demands.

Waiting Parameter and Waiting Fraction. Our key differentiating assumption from

previous work is that the fraction of class-2 customers who wait is governed by a parameter,

θt, that changes with customer learning. Among the factors that lead to an environment

where some customers wait and some buy early are anxiety/risk and anticipation. Customers

who wait for an end-of-period deal may experience anxiety and risk because, as noted above,
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they are not guaranteed a product. Researchers in marketing (e.g., Nowlis et. al. 2004) and

economics (e.g., Loewenstein 1987) showed that for “pleasure” products, of which a vacation

is an archetypal example, there exists a positive utility of anticipation. For a constant price,

customers who purchase a product earlier obtain a higher utility from consuming it. We note

that the utility of anticipation, widely recognized by executives in the vacation industry as

one of the drivers of early purchases, creates another tradeoff against waiting. Heterogeneity

of the customer population with respect to valuing such time and risk tradeoffs (Chesson

and Viscussi 2000) naturally yields the aggregate outcome that some customers wait and

some purchase early, which is observed in practice and is reflected in our model through

waiting parameter θt.

Bumping as a result of overselling capacity is a common practice in travel industry.

Customers are well aware of the possibility of being bumped, a direct language about over-

selling/overbooking is printed on the ticket (officially known as the “Contract of Carriage∥”)

advising that “...flights may be overbooked, and there is a slight chance that a seat will not be

available on a flight for which a person has a confirmed reservation.” Historically, bumping

of passengers was attributed to overestimation of the number of travelers who do not show

up for a flight, but no-shows are not mentioned in the contracts we looked at. Rather the

contracts state that firms bump passengers “... in accordance with [its] particular boarding

priority” and bumped customers have no ability to verify if the firm indeed overestimated

the no-shows or rather oversold the capacity opportunistically to increase revenue.

There exists significant evidence that firms have full incentive to oversell inventory for

higher revenue without considering no-shows. Biyalogorsky et al. (1999) and Bell (2008)

provide analytical justification for such policies and McCartney (2007) provides anecdotal

evidence that ... overbooking can often be a bit of a windfall for an airline. Sell an ex-

pensive last-minute ticket on a full flight to a business traveler and then bump a cheap-fare

vacationer, and the airline increases revenue...”

Bumping in our model reflects such opportunistic overselling of capacity to increase

revenue; we do not consider no-shows. We assume that the firm denies boarding to some

customers who bought at p1 and a class-2 customer denied a unit cannot re-book by paying

the difference p2 − p1 (or p3 − p1 in three price model); this assumption reflects the cur-

∥We checked Contracts for 3 major airlines and they are very similar; we do not provide specific references.
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rent practice in travel industry∗∗ and is reasonable from consumers’ perspective: if a “big

spender” buys a cheap ticket hoping for a deal, she should naturally expect to be treated

as a low spender.

Overall, because both in practice and in our model firms oversell to increase revenue

and bump low-price customers when profitable, bumping clearly has a major impact on

consumers’ wait-or-buy behavior. Thus it is important to consider the implications of

strategic consumer behavior with and without bumping, as we do in this paper.

Allocation of Discounted Units. In practice, discounted units are sold on a “first come,

first serve” basis and the class of the customer is not known. Thus, Bt(St, xt, Yt) is a result

of a random draw in which, for example, all waiting customers could have equal probabil-

ity of buying a discounted product; then Bt(·) would have a hypergeometric distribution.

However, incorporating random allocation leads to an untractable model, in part, because

it requires treating the demands and capacities as integers. Therefore, we consider deter-

ministic allocation mechanisms. In Sections 4 and 5, respectively, we discuss two forms

of proportional allocation depending on the nominal or realized demands (Talluri and van

Ryzin 2004, pp. 330 call such mechanisms “proportional rationing”). Our proportional al-

location based on realized demands simplifies Bt(·) to be equal to the expected outcome of

the above-mentioned random allocation. In Appendix D, through numerical simulations, we

document that the optimal policy obtained with such a simplification is very robust: that

is, the revenue generated by such a policy is only marginally different from that resulting

from the policy optimal under random allocation.

∗∗We asked managers who deal with bumping in major travel firms to comment on the realism of the

non-rebooking assumption. Here are two responses we received:

Respondent 1 “A person in the economy cabin [who bought the lower fare] would not be able to pay

more money to be the person not denied boarding in an oversold situation. ... [S/he] will not have

the opportunity to ‘jump ahead’ of the other passengers by paying more or upgrading.”

Respondent 2 “In this age of fewer employees working harder than ever before, gate agents are generally

solely focused on the operation–that is, getting the flight out on time. That means they will almost

always decline to do any ticket transactions at the gate. ... 90-95% of the time, the ‘rich’ customer

who asks the agent to upgrade his ticket to get a higher [boarding] priority will likely be told no.”

A third respondent verbally confirmed these statements. All three managers also confirmed that the con-

sumers who paid lowest fares are the first candidates for denying boarding.
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Fixed Discounted Price p1. In general, firms could determine both the quantity to

discount and the sale price for each period. Analyzing both variables simultaneously, how-

ever, leads to a very complex multi-period model, since doing so requires understanding the

customer’s perception of how quantity complements/substitutes for price. For example, we

would need to make assumptions on the effect on future customers for the case when the

firm offered only few units on sale, but the price was very low, as opposed to the case when

the firm put many units on sale, but the discount was small. Therefore, in attempt to create

a stylized parsimonious model we assume that the pi’s are fixed for the entire T periods

and concentrate on the quantity decision. Furthermore, research has shown that a heuristic

that charges the properly chosen single price instead of a dynamic price often performs just

marginally suboptimally (e.g., Gallego and van Ryzin 1994). In Section 7.2 we demonstrate

how one might determine the optimal static discount price while dynamically optimizing

the quantity to discount.

Learning Behaviors. Finally, we investigate both self-regulating and smoothing h(θt, xt)

functions, in Sections 4 and 5, respectively. For “smoothing” functions the next period’s

waiting parameter, θt+1, lies between θt and xt/N , so that the decision xt is “smoothed”

into the previous belief, θt. Smoothing functions represent the standard moving average

forecasting and are frequently used to describe the dynamics of the aggregate demand,

e.g., Greenleaf (1995), Popescu and Wu (2007), Liu and van Ryzin (2009). Alternately,

“self-regulating” functions reflect the following behavior: as the total number of waiting

customers increases, the chances to obtain a product on sale decrease for an individual

customer. This negatively affects the number of customers waiting – an expression of self-

regulation captured in h(θt, xt).

Recall that learning in our model applies to the aggregate demand and not to the indi-

vidual consumers. Since the update of waiting fraction in our model happens ex post after

period t is over, at the aggregate level there are many sources of information about the

outcome of period t: word of mouth, advertisements, web sites, surveys, industry reports,

personal experiences, and alike. It is, therefore, quite plausible to assume that the aggregate

demand behavior changes with xt; it is certainly much more plausible than an alternate as-

sumption made in most other works that each and every individual’s behavior changes in

an identical way, either because they are all in the market every period, or including those

not in the market in a given period.
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Appendix B: Proofs

We require the following fundamental theorem:

Theorem 7 (3.9.1 in Topkis 1998) If T is a subset of Rm, {FX(x; θ) : θ ∈ T} is a col-

lection of distribution functions, and F is a closed (in the topology of pointwise convergence),

convex cone of real-valued functions on T , then for any increasing set S,
∫
S
dFX(x; θ) is in

F iff
∫
S
v(x)dFX(x; θ) is in F for any increasing real-valued function v(x).

We use this Theorem to establish monotonicity properties of expectations of functions

of random variables. For example, if v(x) is an increasing function in x, and X is a random

variable that is stochastically concave in some parameter θ, (recall that this means that cdf

of X is convex in θ), then by Theorem 7 the expectation of v(x) over x, EX [v(x)], is concave

in θ. Similarly, if v is decreasing in x, and X is stochastically convex in θ, then w = −v is

increasing (in x), hence the expectation of w is convex (in θ), i.e., the expectation of v is

concave (in θ), and so on.

We also require the following two results:

Proposition 1 (follows from Heyman and Sobel, (1984), p. 525) †† If X is a con-

vex set, Y(x) is a nonempty set for every x ∈ X, the set C = {(x, y)|x ∈ X, y ∈ Y (x)} is a

convex set, g(x,y) is a concave function on C,

f(x) = sup
y∈Y (x)

g(x, y)

and f(x) <∞ for every x ∈ X, then f is a concave function on X.

Note that the above Proposition implies that if f(x, θ) is jointly concave in (x, θ) on a

convex subset of R2, then supx f(x, θ) is concave in θ.

Proposition 2 (Theorem 2.7.6 in Topkis 1998) If f(x, θ) is supermodular in (x, θ) on

a convex subset of R2, then supx f(x, θ) is supermodular in θ.

Proof of Lemma 1. Recall that by assumption (A5) h is linear.

(i) Concavity follows from

∂2

∂x2
J(θ, S, x) =

∂2

∂x2
r(θ, S, x) + δ

∂2ϕ

∂h2

(
∂h

∂x

)2

≤ 0

††See also Theorem A.4 in Porteus (2002) p. 227, and Theorem 5.3 in Rockefellar (1997) for slightly

different statements of effectively the same result.
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since r is concave in x by assumption (A1) and ϕ is concave in h by the condition of the

lemma.

(ii) Supermodularity in (θ, x) follows from

∂2

∂x∂θ
J(θ, S, x) =

∂2

∂x∂θ
r(θ, S, x) + δ

∂2ϕ

∂h2
∂h

∂x

∂h

∂θ
≥ 0

since r is supermodular in (θ, x) by assumption (A2), ϕ is concave in h by the condition of

the lemma and h is self-regulating by assumption (A5).

(iii) Supermodularity in (θ, S) and (S, x) follows from (A2) because ϕ does not depend on

S. Supermodularity in multiple dimensions is equivalent to supermodularity in each pair

(Topkis (1998), Theorem 2.6.1).

Proof of Lemma 2. Let θ̂ be an arbitrary fixed value of θ. Then

∂2

∂θ2

(∫
v(θ, x)dFX(x, θ)

)
|θ=θ̂ =

∂

∂θ

(∫ (
∂

∂θ
v(θ, x)

)
dFX(x; θ) +

∫
v(θ, x)d

∂

∂θ
FX(x; θ)

)
|θ=θ̂

=

∫ (
∂2

∂θ2
v(θ, x)

)
|θ=θ̂dFX(x; θ̂) + 2

∫ (
∂

∂θ
v(θ, x)

)(
d
∂

∂θ
Fx(x; θ)

)
|θ=θ̂

+

∫
v(θ̂, x)

(
d
∂2

∂θ2
FX(x; θ)

)
≤ 2

∫ (
∂

∂θ
v(θ, x)

)(
d
∂

∂θ
Fx(x; θ)

)
|θ=θ̂ +

∫
v(θ̂, x)

(
d
∂2

∂θ2
FX(x; θ)

)
|θ=θ̂

≤
∫
v(θ̂, x)

(
d
∂2

∂θ2
FX(x; θ)

)
=

∂2

∂θ2

∫
v(θ̂, x)dFX(x; θ)

≤ 0

The first inequality follows from the concavity of v(θ, x) in θ. The second inequality follows

by Theorem 7 because v(θ, x) is supermodular (i.e. ∂v/∂θ is increasing in x), while Xθ

is stochastically decreasing. Finally, the third inequality results from Theorem 7 because

v(θ, x) is increasing in x and Xθ is stochastically concave.

Proof of Theorem 1. For t = T the claim holds by assumptions (A1) and (A2)

respectively. Let 1 ≤ t ≤ T and suppose that for every period n ∈ [t+1, T ]: (I1) J∗
n(θn, Sn)

is increasing in Sn; (I2) J
∗
n(θn, Sn) is concave in θn and (I3) J∗

n(θn, Sn) is supermodular in

(θn, Sn).

With assumptions (A4) and (I1)-(I3) following Lemma 2, ϕt+1 is concave in ht, and

therefore with assumptions (A1), (A2) and (A5) by Lemma 1, Jt(θt, St, xt) is concave in xt

and supermodular in (θt, St, xt).
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For period t: (I1) follows from (A3) since ϕt+1 does not depend on St; (I2) follows by

Proposition 1 from (A1) and because (A5) implies that the Hessian of ϕt+1 equals:(
∂2ϕ

∂h2

(
∂h

∂x

)2

+
∂ϕ

∂h

∂2h

∂x2

)(
∂2ϕ

∂h2

(
∂h

∂θ

)2

+
∂ϕ

∂h

∂2h

∂θ2

)
−
(
∂2ϕ

∂h2

(
∂h

∂x

∂h

∂θ

)
+
∂ϕ

∂h

∂2h

∂θ∂x

)2

=
∂2ϕ

∂h2

(
∂h

∂x

)2
∂2ϕ

∂h2

(
∂h

∂θ

)2

−
(
∂2ϕ

∂h2

(
∂h

∂x

∂h

∂θ

))2

= 0.

(I3) follows by Proposition 2 since Jt(θt, St, xt) is supermodular in (θt, St, xt).

Proof of Lemma 3. Recall that yL(S, x) = {y : D(y) ≤ S + x} and yH(S, x) = {y :

B(S, x, y) > N − S − x}; note that by (B4), yL(S, x) ∩ yH(S, x) = ∅.
By the definition of yL(S, x) and yH(S, x):

g(S, x, ŷ) =


p2S + p1(D(ŷ)− S), ifŷ ∈ yL(S, x);

p2S + p1x+ p2B(S, x, ŷ), ifŷ /∈ yL(S, x) ∪ yH(S, x);
p2S + p1x+ (p2 − pC)B(S, x, ŷ) + (N − S − x)pC , ifŷ ∈ yH(S, x).

By assumption (B1), g(S, x, ŷ) is non-decreasing in ŷ. Similarly, since p2 > p1, by assump-

tion (B3), g(S, x, ŷ) is non-decreasing in S.

Let fŶ (y;S) be the pdf of Ŷ , FŶ (y;S) be the CDF and let Ŝ be an arbitrary fixed value

of S.

Then r(θ, S, x) is increasing in S because

∂

∂S

(∫
g(S, x, y)dFŶ (y;S)|

)
S=Ŝ

=

∫
∂

∂S
(g(S, x, y)f(y;S))|S=Ŝdy

=

∫ (
∂

∂S
g(S, x, y)

)
|S=ŜfŶ (y, Ŝ)dy +

∫
g(Ŝ, x, y)

(
∂

∂S
fŶ (y;S)

)
|S=Ŝdy

≥
∫
g(Ŝ, x, y)

(
∂

∂S
fŶ (y;S)

)
|S=Ŝdy

=
∂

∂S

∫
g(Ŝ, x, y)dFŶ (y;S)

≥0

The first inequality holds because g(S, x, ŷ) is nondecreasing in S. The second holds by

Theorem 7 because g(S, x, ŷ) is increasing in ŷ while Ŷ is stochastically increasing in S.

Similarly, r(θ, S, x) is concave in θ by Theorem 7 because g(S, x, ŷ) is nondecreasing in

ŷ and ŷ is stochastically concave in θ.
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Proof of Lemma 4. Let x̂ be the solution to B(S, x̂, ŷ) = N − S − x̂. Since B

is decreasing in x and ∂B/∂x ≥ −1, then B(S, x, ŷ) ≤ N − S − x if 0 ≤ x ≤ x̂, and

B(S, x, ŷ) > N − S − x if x̂ < x ≤ N − S. Because B(S, x, ŷ) is nonnegative, x̂ ≤ N − S.

Consider two cases:

Case 1: if D(ŷ) > N then x ≤ N − S ≤ D(ŷ)− S. So from (1) we obtain

g(S, x, ŷ) =

 p2S + p1x+ p2B(S, x, ŷ), if 0 ≤ x ≤ x̂;

(p2 − pC)S + (p1 − pC)x+ (p2 − pC)B(S, x, ŷ) + pCN, if x̂ < x ≤ N − S.

Noting g(S, x, ŷ) is continuous at x̂, concave on both segments and limx↑x̂
∂g
∂x

=

limx↓x̂
∂g
∂x

+ pC(1− ∂B
∂x
), g(S, x, ŷ) is concave by assumption (B2) and pC ≥ 0.

Case 2: if D(ŷ) ≤ N then S + x+B(S, x, ŷ) ≤ N). By (1)

g(S, x, ŷ) =

 p2S + p1x+ p2B(S, x, ŷ), if 0 ≤ x ≤ D(ŷ)− S;

p2S + p1(D(ŷ)− S), if D(ŷ)− S < x ≤ N − S.

g(S, x, ŷ) is continuous and if ∂B/∂x ≥ −p1/p2, then g(S, x, ŷ) is non-decreasing in x,

and by assumption (B5) is concave.

Because concavity is maintained under expectation over an exogenous random variable,

r(θ, S, x) is concave in x.

Proof of Corollary 1. We use the definitions of yL(S, x) and yH(S, x) given in

Lemma 3. From (1) and (2) we obtain

r(θ, S, x) =

∫
yL(S,x)

(p2S + p1(D(y)− S)) dFŶ (y)

+

∫
Y \{yL(S,x)∪yH(S,x)}

(p2S + p1x+ p2B(S, x, y)) dFŶ (y)

+

∫
yH(S,x)

((p2 − pC)S + (p1 − pC)x+ (p2 − pC)B(S, x, y) + pCN) dFŶ (y)

where the limits of the integration follows from the definitions of yL and yH . Differentiating

r(θ, S, x) in x we obtain

∂r

∂x
=

∫
Y \{yL∪yH}

(
p1 + p2

∂B(S, x, y)

∂x

)
dFŶ (y)+

∫
yH

(
(p1 − pC) + (p2 − pC)

∂B(S, x, y)

∂x

)
dFŶ (y).

Setting ∂r/∂x = 0 and rearranging the terms gives (5)

Proof of Lemma 5.
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For joint concavity, observe that since r is concave in θ and in x by lemmas 3 and 4,

respectively, it is sufficient to show that the determinant of the Hessian ∂2r/∂x2∂2r/∂θ2 −
(∂2r/∂x∂θ)2 > 0.

For supermodularity, observe that by Theorem 7 if g(S, x, ŷ) is supermodular in (S, x, ŷ),

and because Ŷ is stochastically supermodular in (θ, S), then r(θ, S, x) is also supermodular

in (θ, S, x). (See Section 3.10.1 in Topkis (1998)).

Consider two cases:

Case 1: if D(ŷ) > N then x ≤ N − S ≤ D(ŷ)− S. From (1) we obtain

g(S, x, ŷ) =

 p2S + p1x+ p2B(S, x, ŷ), if B − (N − S − x) < 0;

(p2 − pC)S + (p1 − pC)x+ (p2 − pC)B + pCN, if B − (N − S − x) ≥ 0.

(16)

If pC = 0 then by the definition of B and the conditions of the Lemma, B = Q2(ŷ)−
S − cx for some constant c > 0. Thus g = p2Q

2(ŷ) + x(p1 − cp2), which is clearly

supermodular. If pC > 0 then by the conditions of the lemma B = Q2(ŷ)−S−x, and

thus B − (N − S − x) < 0 iff Q2(ŷ) < N . Since by definition Q2(ŷ) < N , it therefore

follows that g = p2Q
2(ŷ)+(p1−p2)x which is clearly supermodular. In either case the

derivative of g in x is not a function of ŷ, and so ∂2r
∂x∂θ

= 0, i.e., r is jointly concave.

Case 2: if D(ŷ) ≤ N then

g(S, x, ŷ) =

 p2S + p1x+ p2B(S, x, ŷ), if 0 ≤ x ≤ D(ŷ)− S;

p2S + p1(D(ŷ)− S), if D(ŷ)− S < x ≤ N − S.

By the conditions of the lemma B = Q2(ŷ) − S − p1
p2
x. Thus g = p2Q

2(ŷ) for 0 ≤
x ≤ D(ŷ)− S, and g = p2S + p1(D(ŷ)− S) for D(ŷ)− S ≤ x ≤ N − S. Further, by

condition (B4), B = 0 at x = D(ŷ) − S, i.e., p2Q
2(ŷ) = p2S + p1(D(ŷ) − S). This

implies that the values of g are equal on both intervals and so g is independent of x

and therefore supermodular and jointly concave.

Proof of Theorem 3. In the case of excess capacity if x > x̂ = A , then g(α, y, x) =

p2(1− α)yd2 + p1A which is independent of x.

In the case of scarce capacity by definition A > N − S ≥ x. If x > x̂, then g(α, y, x) =

p2S+p1x+(p2−pC)αyd2
(
1− x

A

)
+pC(N −S−x), and so ∂g

∂x
= (p1−pC)− (p2−pC)αyd2A

≤
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0 as pC ≥ p1. Therefore, x∗ ∈ [0, x̂(α, y)]. On this interval g(α, y, x) = p2S + p1x +

p2αyd2
(
1− x

A

)
, which is linear in x, and so the optimal solution in on the boundary of the

interval; that is x∗ ∈ {0; x̂(α, y)} = Πt.

We next show the existence and uniqueness of the threshold waiting fraction. Let

C(α) = ∂g
∂x

and observe C(α) = p1 − αY p2d2
(a+bY )d1+αY d2

. Differentiating it we obtain ∂C
∂α

=

− p2d2d1Y (a+bY )
((a+bY )d1+αY d2)2

≤ 0. Therefore α∗ solves C(α∗) = 0. Since C(0) = p1 > 0 and C is

monotonically decreasing, α∗ is unique.

Finally, for α ≥ α∗, C(α) ≤ 0; that is g(α, x, y) is nonincreasing in x and so x∗ = 0.

Otherwise the maximal revenue is attained at x∗ = x̂(α, y). In the case of excess capacity,

however, the revenue function is flat on [x̂(α, y), N − S], and so in this case any x ∈
[x̂(α, y), N − S] is optimal if α ≤ α∗.

Proof of Theorem 4. Recall that we consider two simplified models: the one with a

deterministic waiting fraction, given by (13), and the one with deterministic demand, given

by (14). We first prove the theorem for the deterministic waiting case, and then extend it

to deterministic demand case. We require the following three lemmas.

Lemma 6 g(α, y, x) is decreasing convex in α for x ∈ Πt.

Proof If x = 0 then g(α, y, 0) = p2y(1− α)d2 + p2αyd2 = p2yd2, which is not a function of

α, and therefore is decreasing convex in a weak sense.

If x = x̂ then in the excess capacity case g(α, y, x̂(α, y)) = p2(1−α)yd2+p1((a+ by)d1+
αyd2) which is linear decreasing in α since ∂g

∂α
= −yd2(p2 − p1) ≤ 0 because p2 ≥ p1. In the

scarce capacity case observe that x̂
A
= N−S−αyd2

(a+by)d1+αyd2−αyd2 = N−S−αyd2
(a+by)d1

, which is linear in α.

Therefore g(α, y, x̂(α, y)) = p2y(1−α)d2+ p1x+(p2− pC)
N−S−αyd2
(a+by)d1

+ pC(N −S−x), which

is linear decreasing in α since ∂g
∂α

= −yd2(p2−p1)(N−yd2)
(a+by)d1

≤ 0 as yd2 ≤ ȳd2 ≤ N and p2 ≥ p1

by the assumption, and ∂2g
∂α2 = 0.

Lemma 7 If f(x) is decreasing convex and g(x) is increasing concave, then f(g(x)) is

decreasing convex.

Proof Follows by the chain rule.

Convex: ∂2f
∂x2

= ∂2f
∂g2

(
∂g
∂x

)2
+ ∂f

∂g
∂2g
∂x2

≥ 0, because f is decreasing convex and g is concave.

Decreasing: ∂f
∂x

= ∂f
∂g

∂g
∂x

≤ 0, because f is decreasing, and g is increasing.

42



Lemma 8 Let f(x, y) be decreasing and(or) convex in x for all y ∈ Y , then

(a)
∑

y∈Y f(x, y) is decreasing and(or) convex in x;

(b) supy∈Y f(x, y) is decreasing and(or) convex in x;

Proof Follows from Theorems 5.2 and 5.5 in Rockafellar (1997). See also Heyman and

Sobel (1984), p. 525 and Theorem A.4 in Porteus (2002), p. 226.

(i) Deterministic waiting model. For period T the claim is implied by Theorem 3. For

xT ∈ ΠT , by Lemma 6, the single-period revenue, gT (αT , yT , xT ), is decreasing and convex

in αT . Therefore since R∗
T (θT , αT , yT ) = maxxT∈ΠT

gT (αT , yT , xT ), R
∗
T , is also decreasing

and convex in αT by part (b) of Lemma 8.

In the deterministic waiting model αT ≡ θT = hT−1(θT−1, xT−1), and so by the above

R∗
T is also decreasing and convex in hT−1(·). Therefore its expectation over yT , ϕ

DW
T as per

(13), is decreasing and convex in hT−1(·) by part (a) of Lemma 8.

Let 1 ≤ t < T and suppose that for every n ∈ [t+1, T ], ϕn(hn−1(θn−1, xn−1)) is decreasing

convex in hn−1. Then by Lemma 7, in period t+ 1, ϕt+1 is decreasing and convex in θt and

xt.

Recall that gt(αt, yt, xt) is piecewise linear in xt on [0, N − St] with the breakpoint at

xt = x̂t, and further recall that gt(αt, yt, xt) is decreasing in xt on xt ∈ (x̂t, N − St]. Since

ϕt+1 is decreasing and convex in xt, Rt(θt, αtyt, xt) consists of two adjacent segments both

convex in xt, and Rt(θt, αtyt, xt) decreases in xt on xt ∈ (x̂t, N − St]. Thus x∗t ∈ [0, x̂t].

Finally, since the revenue-to-go function is convex on this interval, x∗ ∈ {0; x̂t} ≡ Πt.

Therefore it is sufficient to prove that the induction assumption holds for period t; that

is that ϕt is decreasing and convex in ht−1.

For xt ∈ Πt, the single-period revenue, gt(αt, yt, xt), is decreasing and convex in αt by

Lemma 6. The future revenue, ϕt+1, is also decreasing and convex in αt by the induc-

tion assumption, upon noting that in the deterministic waiting model αt ≡ θt. Therefore

Rt(θt, αt, yt, xt) is decreasing and convex in αt. And so by part (b) of Lemma 8, R∗
t is also

decreasing and convex in αt. Finally, since in deterministic waiting model yt is independent

of αt, by part (a) of Lemma 8 ϕt = Eyt [R
∗
t ] is decreasing and convex in αt, and therefore in

ht−1 (since αt ≡ θt = ht−1).

(ii) Deterministic demand model. For period T the claim is implied by the single-period

result, given in Theorem 3.
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In the deterministic demand model, observe that R∗
T (θT , αT , 1) = maxxT∈ΠT

g(αT , 1, xT )

is independent of θT . Thus, from (14), ϕDDT = EαT |hT−1
[R∗

T (αT )], which is decreasing and

convex in hT−1 by Theorem 7, since by the above R∗
T is decreasing in αT , and αT is stochas-

tically increasing and concave in θT by our assumption. Therefore by Lemma 7, ϕT is

decreasing and convex in θT−1 and xT−1, since hT−1(θT−1, xT−1) is increasing and concave.

Let 1 ≤ t < T and suppose that for every n ∈ [t+1, T ], ϕn(hn−1(θn−1, xn−1)) is decreasing

convex in hn−1. Then by Lemma 7, in period t+ 1, ϕt+1 is decreasing and convex in θt and

xt. With this x∗t ∈ {0; x̂t} ≡ Πt by the same argument as in the proof of Theorem 4, and it

remains to prove that ϕt is decreasing and convex in ht−1.

Since αt is stochastically increasing and concave in θt = ht−1(·), the vector (θt, αt) is

stochastically increasing and concave in ht−1.

For xt ∈ Πt, single-period revenue gt(αt1, xt), is decreasing in αt by Lemma 6 and

independent of θt. Future revenue, ϕt+1, is independent of αt, and is decreasing in ht by

the induction assumption, and therefore by Lemma 7 ϕt+1 is also decreasing in θt. Thus

Rt(θt, αt, yt, xt) is decreasing in (θt, αt). And by part (b) of Lemma 8, R∗
t is also decreasing

in (θt, αt). From (14) ϕt = E(θt,αt)[R
∗
t ] is decreasing and convex in ht−1(·) by Theorem 7

because (θt, αt) is stochastically increasing and concave in ht−1.

Proof of Theorem 6. Follows by the same argument as in the deterministic waiting

case in the proof of Theorem 4. As in Lemma 6 we prove that gt(αt, yt, xt) is convex in αt

for xt ∈ Πt, where Πt is redefined as {0, x̂, N − S}.
If x = 0 then g(α, y, 0) = p2S + p3yψ(α)D3, which is convex since ψ is convex.

If x = x̂ then in the excess capacity case g(α, y, A(α, y)) = p2(1−α)yD2+p1((a+by)d1+

αyD2) which is linear in α. In the scarce capacity case, if bumping is not allowed then g is

piecewise linear convex. By our assumption, if α ≤ α̂ then ψ(α) = 0 and so ∂g
∂α

= −yD2(p2−
p1). If α > α̂ then ψ′ = D2/D3 and

∂g
∂α

= −yD2(p2−p1E(α, y))+yD2p3(1−E(α, y)), where
E(α, y) = N−S−ψ(α)yD3

A(α,y)−ψ(α)yD3
< 1 and ∂E

∂α
= −y((a+by)d1+yD2−N)(D2−ψ′

αD3)
(A(α,y)−ψ(α)yD3)2

= 0. The function is

convex because ∂g
∂α
|α≥α̂ − ∂g

∂α
|α<α̂ = yD2(p3 − p1)(1 − E(α, y)) ≥ 0. If bumping is allowed,

then

∂2g

∂α2
=

(
yD3((a+ by)d1 + yD2 −N)(p3 − p1)

(A(α, y)− yψ(α)D3)3

)
(17)

(A(α, y)ψ′′
α(A(α, y)− yψ(α)D3) + 2y(ψ′

αD3 −D2)(ψ
′
αA(α, y)− yψD2)) ≥ 0

because the numerator in the first term in (17) is positive since in the scarce capacity case

(a + by)d1 + yD2 ≥ N , and p3 > p1 by the definition. The denominator is positive since
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A(α, y)−yψ(α)D3 = (a+by)d1+y(αD2−ψ(α)D3) ≥ (a+by)d1+yD2 ≥ 0 as αD2 ≥ ψ(α)D3

(by the definition of ψ, since the number of waiting customers of class-2 is non-negative).

In the second term, A(α, y)ψ′′
α(A(α, y)− yψ(α)D3) ≥ 0 since ψ is convex and by the above

A(α, y) − yψ(α)D3 > 0. And 2y(ψ′
αD3 − D2)(ψ

′
αA(α, y) − yψD2) ≥ 0 because by the

assumptions on ψ both elements of the product are negative.

If x = N−S then in the case of the excess capacity N−S > A and therefore g(α, y,N−
S) = p2(1 − α)yD2 + p1((a + by)d1 + αyD2), which is linear in α. In the case of scarce

capacity N − S > x̂ and therefore g(α, y,N − S) = p2(1− α)yD2 + p1(N − (1− α)yD2) +

(p3 − pC)ψ(α)yD3 (1− (N − (1− α)yD2)/A(α, y)). For this,

∂2g

∂α2
=

(
yD3((a+ by)d1 + yD2 −N)(p3 − pC)

A(α, y)3

)
(18)(

A(α, y)2ψ′′
α + 2yD2(yψD2 − ψ′

αA(α, y))
)
≥ 0

because the first term in (18) is positive since in the scarce capacity case (a+ by)d1+yD2 ≥
N , and p3 > pC by the definition. And in the second term, ψ is convex, and by the

assumption yψD2 ≥ ψ′
αA(α, y). Therefore g(α, y, x) is convex in α for x ∈ Πt, and the

result follows.

Lastly note that in the no-bumping case pC = p3 and so the above derivative is zero.

Therefore g is a linear decreasing function of α, and since h increases in x, future revenue

is therefore decreasing in x. Single period revenue decreases in x for x > x̂ and therefore

the total revenue also decreases on x > x̂. Hence x∗ ∈ {0, x̂}.
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Appendix C: Simplified Models with Non-perfectly Cor-

related Demands

In our simplified models we assumed that the demands between classes -1 and -2 are either

independent, or perfectly positively or negatively correlated. That allowed us to present the

solution in closed form. By observing initial sales, and knowing the waiting parameter, we

could estimate the exact number of waiting customers.

In this section we extend the simplified models to the cases of non-perfectly correlated

demands. We show that (subject to a certain regularity condition) it is sufficient to know

the upper (lower) bound on the class-1 demand to be able to determine the optimal number

of units on sale in the closed form in the case of positive (negative) correlation. We refer to

the simplified model with two classes of Sections 5.2 and 5.3 as the main model.

To model non-perfectly correlated demands we assume that whenever the class-2 demand

multiplier is yt, the class-1 demand multiplier can be either the same yt, with probability

q, or ϵyt, ϵ > 0 with probability 1 − q. Such a treatment is an extension of the high/low

demand models that are frequent in the dynamic pricing literature (e.g, Su 2007). Recall

that whenever the class-2 demand multiplier is y, the class-1 demand multiplier is a + by.

For the ease of exposition in this section we assume a = 0 and b = 1; it is not difficult (but

messy) to verify that the results hold for general a, b. Let A(α, y) = αyd2 + yd1, and let let

Aϵ(α, y) = αyd2 + ϵyd1. Redefine similarly from (10) x̂t and x̂ϵt. Suppose ϵ > 1; observe

A(α, y) < Aϵ(α, y) and so x̂t < x̂ϵt.

From (9) denoting the expected single period revenue as g2t we obtain:

g2t(αt, yt, xt) = p2St + p1 (qmin[xt, At(αt, yt)] + (1− q)min[xt, Aϵt(αt, yt)])

+p2αtytD2

(
q(1− min[xt, At(αt, yt)]

At(αt, yt)
) + (1− q)(1− min[xt, Aϵt(αt, yt)]

Aϵt(αt, yt)
)

)
−qpC

(
αtytD2

(
1− min[xt, At(αt, yt)]

At(αt, yt)

)
− (N − St − xt)

)+

−(1− q)pC

(
αtytD2

(
1− min[xt, Aϵt(αt, yt)]

Aϵt(αt, yt)

)
− (N − St − xt)

)+

(19)

Note that this revenue function resembles the main model, (9), if ϵ = 1 or, equivalently,

q = 1.

In the main model we show that in each period there are only two possibly optimal

solutions: xt = 0 or xt = x̂t. The result holds because the revenue function in the single
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period is piece-wise linear with a breakpoint at x̂t, non-increasing for x > x̂t, and the future

revenue is decreasing and convex. Thus the total revenue was a piece-wise convex function,

which is decreasing for x > x̂t, and so the optimal solution is either xt = 0 or xt = x̂t.

Below we show that in this new model with non-perfectly correlated demands an equiv-

alent result holds, but rather for xt = 0 or xt = x̂ϵt. The logic is also similar – we show that

the single-period revenue is piece-wise convex on x ∈ [0, x̂ϵt] and non-increasing for x > x̂ϵt.

That ensures that in the single period the optimal solution is either xt = 0 or xt = x̂ϵt.

Convexity of the future revenue then follows by the same argument as in the main model

upon noting that x̂ϵt in the new model is equal to x̂t of the old model but with nominal

demand d1 redefined as ϵd1.

It therefore remains to show piece-wise convexity and decreasing property for the single-

period revenue function g2. As in the main model we proceed by considering the excess and

scarce capacity cases. In the new model these capacity scenarios are transformed into three

cases:

Case 1: Always excess capacity, i.e., Aϵ(α, y) + S ≤ N . In this case bumping does not

occur and so the revenue function simplifies to:

g2t(αt, yt, xt) = p2St + p1 (qmin[xt, At(αt, yt)] + (1− q)min[xt, Aϵt(αt, yt)])

+p2αtytD2

(
q(1− min[xt, At(αt, yt)]

At(αt, yt)
) + (1− q)(1− min[xt, Aϵt(αt, yt)]

Aϵt(αt, yt)
)

)
(20)

If x ≤ x̂t then g2 is linear in x with slope p1 − p2αyD2
qAϵ(α,y)+(1−q)A(α,y)

A(α,y)Aϵ(α,y)
.

If x̂t ≤ x ≤ x̂ϵt then g2 is linear in x with slope (1− q)
(
p1 − p2αyD2

Aϵ(α,y)

)
.

If x ≥ x̂ϵt then same as in the main model, g2 is independent of x.

By taking the difference of the first and second slopes, it is not difficult to check that

g2 is convex on x ∈ [0, x̂ϵt] if p1 − p2αD2

αD2+d1
≤ 0. The latter condition is the familiar “bang-

bang” threshold from the main model (see the proof of Theorem 3 for a = 0, b = 1). The

inequality holds if the difference in prices, p2 − p1 is high enough so that the fraction of

waiting customers α is never below a certain point that makes the threshold equal zero. If

that is the case, i.e., when the discounted price is low enough, then the revenue function is

convex.

Case 2: Probabilistic scarce capacity, i.e., A(α, y) + S ≤ N ≤ Aϵ(α, y) + S. In this case

bumping can occur only if the class-1 demand is high (has multiplier ϵy, which happens
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with probability 1− q). In that case the revenue function is:

g2t(αt, yt, xt) = p2St + p1 (qmin[xt, At(αt, yt)] + (1− q)min[xt, Aϵt(αt, yt)])

+p2αtytD2

(
q(1− min[xt, At(αt, yt)]

At(αt, yt)
) + (1− q)(1− min[xt, Aϵt(αt, yt)]

Aϵt(αt, yt)
)

)
−(1− q)pC

(
αtytD2

(
1− min[xt, Aϵt(αt, yt)]

Aϵt(αt, yt)

)
− (N − St − xt)

)+

(21)

For this observe that depending on the values of x, there are the same three ranges as

in the Case 1 above. In the third range, g2 is decreasing in x same as in the main model,

and in either of the first two the slope is modified by deducting the same penalty-related

term (the multiple of pC). Thus the difference between slopes is the same as in case 1, and

so convexity on the x ∈ [0, x̂ϵt] range follows by the same argument.

Case 3: Always scarce capacity, i.e., A(α, y) + S ≥ N . In this case the revenue function

is given by (19) and depending on the value of x the same three ranges as in Case 1 can

occur. In the third range the slope in x is negative by the same argument as in the main

model. The slope in the first range is same as in Case 1 with two penalty terms deducted,

and the slope in the second range has only the second penalty term deducted. Thus the

slope over the second range is larger; convexity over x ∈ [0, x̂ϵt] follows.

In sum, the single-period revenue function is convex on x ∈ [0, x̂ϵt] and non-increasing

on x > x̂ϵt, and so as we discussed above the results of Theorems 3 and 4 hold with

x∗ ∈ {0; x̂ϵt} ≡ Πϵt. The sufficient condition for this result is that p1 − p2αD2

αD2+d1
≤ 0. This

inequality holds if the difference in prices, p2 − p1 is high enough so that the fraction of

waiting customers α is never below a certain point that makes the threshold equal zero.

Managerially, it implies that if the discounted price is low enough, then the firm does not

need to know the exact number of discount-only class-1 customers. Rather, it is sufficient

to know the lower bound on the number of discount customers.

Further, it is not hard to verify that if ϵ < 1 then the condition for convexity becomes a

≥, and so the logic flips – the discounted price has to be high enough so that the number of

waiting customers is always low enough, and then it is sufficient for the firm to only know

the upper bound on the number of discount-only class-1 customers in the market.
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Appendix D: Random Allocation of Discounted Units

We tested whether it is necessary in our model to allocate inventory in a random first come,

first serve (FCFS) manner or if we are justified in assuming a proportional allocation. Under

FCFS, assuming all waiting customers arrive according to the same process, the allocation

would be determined by the realization of a Hypergeometric random variable, implying

the allocation function is given by BFCFS = ψ(α)yD3 − Hypergeometric(x, ψ(α)yD3, A).

Under our proportional allocation assumption, B = ψ(α)yD3(1 − min[x,A]
A

) = E[BFCFS],

thus proportional allocation substitutes BFCFS with its expected value.

We compared the analytical optimal policy derived for proportional allocation with the

policy optimal for random allocation derived using simulation. Using the scenarios presented

in Section 7, we observed that the simulated and optimal policies in most cases put the same

number of units on sale. When non-zero, the optimal number of units to place on sale is

typically large (e.g., in Figure 2 (a) x̂ = 75...90 units). Therefore, by the central limit

theorem, the relative error of using the expectation as opposed to the realization of BFCFS

is small. As a result, the revenue generated under the optimal policy when the discounted

units are allocated in a random, FCFS manner is also close to that of the case when they

are proportionally allocated. In our simulations the difference between these revenues never

exceeded 3 percent. Thus we conclude that for the examples we studied, the proportional

allocation assumption is justified.
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